THE GEOLOGY AND ENGINEERING STRUCTURES
of the
CHESAPEAKE AND OHIO CANAL

An Engineering Geologist’s Descriptions and Drawings

William E. Davies

Draft 1989
Published 1999
The C&O Canal Association is an all-volunteer citizens organization established in 1954 to help conserve of the natural and historical environment of the C&O Canal and the Potomac River basin. The Association works with the National Park Service in its efforts to preserve and promote the 184-mile towpath.

Permission is granted to use this copyrighted material solely for non-commercial, instructional, personal, or scholarly purposes. In reproducing any or all of this publication, please attribute to the “C&O Canal Association, a nonprofit organization based in Glen Echo, Maryland.”
PREFACE TO THE ELECTRONIC EDITION, 2014

Over the past 15 years William Davies’ uncompleted manuscript has established itself as an invaluable resource for students of the C&O Canal. The document benefits from Davies’ experience as an engineer, knowledge of geology, and extensive archival research.

In 1954 Davies was part of the famous hike led by Justice William O. Douglas over the entire length of the canal. That hike dissuaded the editors of the Washington Post from their support of the plan to convert the towpath into a highway. Increased public awareness of the canal’s scenic beauty and historic significance set in motion a sequence of events that culminated in the creation of the C&O Canal National Historical Park January 8, 1971.

The C&O Canal Association could think of no better way to mark the 60th anniversary of the Douglas Hike than to make Davies’ seminal work available to a wider audience.

Friends trace the start of Davies’ love affair with the canal to the 1954 Douglas Hike. When the editors of the Washington Post accepted Douglas’ challenge to hike the canal, he recruited various experts to join the hike. Justice Douglas thought these experts could bolster the case for preservation. Davies became part of the hike when Justice Douglas approached the United States Geological Survey in search of a geologist.

Davies was a charter member of the C&O Canal Association and its president in 1962. Even though his career took him around the world, Davies continued to serve as an officer or director of the association from 1955 until his death in 1990.

This unfinished manuscript is product of Davies’ love of the canal and his love of learning. After Davies died, his friend Bruce Wood wrote, “Because he did not cease researching, he did not cease writing. I do not know how large the book is today, but I knew it would never be finished in his lifetime because of his love for learning and for passing that learning on to others.”
PREFACE

William E. Davies began collecting and organizing data for this manuscript on the engineering geology of the Chesapeake and Ohio Canal late in the 1940s. He was still pursuing relevant data on the canal when he died on June 27, 1990. For Bill, the consummate engineering geologist, the effort was both a labor of love and an intellectual challenge.

The manuscript provides an excellent example of how a capable engineering geologist does field work. It is also a fascinating historical document. The material is reproduced from his draft without changes but with these additions:

1. Consecutive page numbers have been added at the bottom of each page; they are enclosed in parentheses to differentiate them from Bill's earlier pagination.
2. The report has been divided into sections relating to consecutive sections of the canal; they correspond to the informal organization of his notes, which (along with the page numbers) make it easier to find particular sections.
3. Bill drew the frontispiece and Figure 1, which show the geologic/geographic setting of the canal.
4. Bill's wife, Geraldine H. Davies, made available diagrams of an aqueduct, a culvert, and a lock from Bill's large collection.
5. Bill wrote the introduction, which was previously printed in Field Trip Guidebook T206, published for the 28th International Geological Congress.

The memorial to Bill (Appendix A) was written by a longtime colleague, Daniel B. Krinsley of the U.S. Geological Survey. The Geological Society of America originally published this memorial, and graciously allowed its inclusion in this work. Dr. Krinsley has added five vignettes that reflect Bill's character.

Appendix B is a piece that Bill wrote to illustrate some of the trials and tribulations faced by those who built the canal.

Appendix C is a selected bibliography of William E. Davies prepared by Dr. Krinsley. It was published by the Geological Society of America.

The research supporting this manuscript constitutes 38 linear feet of well-organized materials, including copies of original sources, field notes, sketches, maps, drawings, and photographs concerning the canal. This collection will be deposited in the Western Maryland Room of the Washington County Free Library in Hagerstown, Maryland, and will be available to scholars and others interested in the C&O Canal.

In compiling and arranging this report, I have had considerable assistance. The effort would not have been possible without the help of Gerry Davies, who gave Bill the same type of wholehearted support during his field work. Her initials are found on many field note pages from source materials.

Amber Edmiston inserted the page numbers and clarified some of Bill's manuscript insertions that were barely legible.

Dedra L. Davis and Veronica Santos-Mazzuchi provided typing support. Scott Schramm helped with layout and Stephanie S. Babcock assisted with book design and paper selection.

The introduction is printed with permission of the American Geophysical Union. The C&O Canal Association (as reflected by longtime member and former president Carl Linden) retained an interest over the years in having Bill's work made available.

Blair T. Bower, P.E., was a continual help and prod to achieving the final product.

Thomas W. Richards
Arlington, VA 30 June 1999
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontispiece</td>
<td>ii</td>
</tr>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>Introduction</td>
<td>ix</td>
</tr>
<tr>
<td>Washington Branch</td>
<td>(1)</td>
</tr>
<tr>
<td>Georgetown to Little Falls, Md.</td>
<td>(4)</td>
</tr>
<tr>
<td>Little Falls, Md. to Great Falls, Md.</td>
<td>(52)</td>
</tr>
<tr>
<td>Great Falls, Md. to Seneca, Md.</td>
<td>(91)</td>
</tr>
<tr>
<td>Seneca, Md. to Whites Ferry, Md.</td>
<td>(112)</td>
</tr>
<tr>
<td>Whites Ferry, Md. to Point of Rocks, Md.</td>
<td>(133)</td>
</tr>
<tr>
<td>Point of Rocks, Md. to Harpers Ferry, W.Va.</td>
<td>(159)</td>
</tr>
<tr>
<td>Harpers Ferry, W.Va. to Shepherdstown, W.Va.</td>
<td>(197)</td>
</tr>
<tr>
<td>Shepherdstown, W.Va. to Dam No. 4</td>
<td>(243)</td>
</tr>
<tr>
<td>Dam No. 4 to Conococheague Aqueduct</td>
<td>(264)</td>
</tr>
<tr>
<td>Conococheague Aqueduct to Fort Frederick, Md.</td>
<td>(303)</td>
</tr>
<tr>
<td>Fort Frederick, Md. to Great Tonoloway Aqueduct</td>
<td>(367)</td>
</tr>
<tr>
<td>Great Tonoloway Creek Aqueduct to Dam No. 6</td>
<td>(392)</td>
</tr>
<tr>
<td>Dam No. 6 to Fifteen Mile Creek Aqueduct</td>
<td>(423)</td>
</tr>
<tr>
<td>Fifteen Mile Creek Aqueduct to Paw Paw Tunnel</td>
<td>(455)</td>
</tr>
<tr>
<td>Paw Paw Tunnel to Town Creek Aqueduct</td>
<td>(502)</td>
</tr>
<tr>
<td>Town Creek Aqueduct to Oldtown, Md.</td>
<td>(528)</td>
</tr>
<tr>
<td>Oldtown, Md. to Spring Gap, Md.</td>
<td>(544)</td>
</tr>
<tr>
<td>Spring Gap, Md. to Evitts Creek Aqueduct</td>
<td>(564)</td>
</tr>
<tr>
<td>Evitts Creek Aqueduct to Cumberland, MD</td>
<td>(591)</td>
</tr>
</tbody>
</table>
Appendix A Memorial to William E. Davies (613)
Appendix B An Event in the Legal History of the Chesapeake and Ohio Canal Company. (619)
Appendix C Selected Bibliography of William E. Davies (621)
INTRODUCTION

The Chesapeake and Ohio Canal was one of the more ambitious transportation projects of the early 19th century. As originally planned, it was to extend from Georgetown, D.C. to Pittsburgh, Pennsylvania by way of the Potomac, Youghiogheny, and Monongahela valleys with a summit tunnel over four miles long.

The canal was begun at the west end of the Georgetown level on 4 July 1828 and after 13 years of hard financial and physical labor construction came to a halt at Dam No. 6, 134 miles from Washington, D.C. After lying fallow above Dam No. 6 for eight years, construction resumed and the canal reached Cumberland in 1850, eight years after its rival, the Baltimore and Ohio Rail Road, had gained entry to the same point. All hopes of reaching Pittsburgh disappeared even though a tunnel had been constructed to connect the C & O Canal with the Pennsylvania Canal.

The C & O Canal assumed the role of hauling coal to the nation’s capital for the rest of its life. The canal did this job well but its original cost of at least $11,000,000 saddled it with a huge debt that never permitted a profitable operation. The canal held its own against the railroad until the middle 1870’s when the efficiency of air brakes and larger locomotives permitted rates so low on the railroad that the canal could not compete.

In default of interest on a major bond issue, the canal accepted bankruptcy after the disastrous flood of June 1889. Normally the canal should have died then. However, its old rival, the B & O Railroad, saw that the canal could be used by the then growing and competing Western Maryland Railroad to reach Cumberland and Washington and open new rivalry in transporting coal. After litigation the canal fell under the influence of the B & O and was restored as an operating waterway in 1891.

The canal, operated by trustees, continued to haul coal until the 1924 floods caused serious damage. With little coal to haul, and with the Western Maryland Railroad under B & O control, there was little reason to continue operation. To retain the charter and franchise, the canal was held to be in a state to accept traffic if adequate tonnage was offered. None was offered and the canal continued to decay slowly. In 1938 the B & O Railroad found it hard pressed to make payments on a Reconstruction Finance Corporation loan and the canal was offered for sale to the U.S. government. The canal was purchased by the U.S. Department of Interior in 1938 for $2,000,000 with the proceeds going to ease the B & O’s plight. The canal was turned over to the National Park Service for use as a recreation area and was restored between Georgetown and Seneca, Md. The canal was made a national historical park in 1971. By 1988 it was among the top 10 national parks in attendance with about 4,000,000 visitor days in that year.

The canal crosses four major geological provinces (see frontispiece). From Washington to Point of Rocks the canal is in the Piedmont Province, a low rolling terrane of Precambrian to Lower Paleozoic metamorphic rocks. The western part of the Piedmont contains rocks of Triassic age, mainly red sandstone, shale and conglomerate intruded by diabase dikes and sills. The Blue Ridge province between Point of Rocks and Harpers Ferry consists of three ridges formed of Precambrian gneiss and metabasalt and lower Cambrian quartzite and phyllite. West of the Blue Ridge is the Great Valley province, a lowland up to 26 miles (41.8 km) wide in the Potomac River area. West of the Great Valley is the Valley and Ridge province consisting of folded Paleozoic rocks, (see Figure 1: Geologic Map of the Potomac Appalachians).

The Allegheny Plateau lies just west of the Cumberland terminus of the canal. It is an area of high rolling uplands on relatively horizontal Carboniferous (Mississippian and Pennsylvanian) and Permian shale, sandstone and coal formations.
Potomac Valley history begins shortly after the founding of Jamestown, Virginia in 1609 when John Smith explored the river to Little Falls, 3 miles (4.8 km) west of the present site of Washington. By 1736, the Potomac River had been explored to its headspring at the Fairfax Stone, and by 1750 traders and a few settlers were scattered throughout most of the valley. Many had migrated via the Great Valley from Pennsylvania.

A fort was built at Cumberland in 1754-55 that was the base for General Braddock’s ill-fated military venture against Fort Duquense (now Pittsburgh). Cumberland was organized as a town in 1786 following the establishment of Shepherdstown, Williamsport and Hancock. Early settlers were mainly Germans but construction of the railroad and canal brought in many Irish, Dutch, English and Welsh immigrants. Industry in the Potomac Valley was generally light except in Cumberland. In that city steel mills, synthetic fiber plants and tire factories grew, prospered and then closed. Coal mining at the head of the valley lasted a century and a half until the seams were mined out in the 1970s. Publishing, farming, cattle raising, fruit growing and recreation are now important segments of the economy. Close to Washington, the valley is the bedroom for many employees of the federal government and the private technical companies that support federal activities.
TABLE I General stratigraphic column for the Potomac Appalachians
(Thickness shown is the maximum for the area)

<table>
<thead>
<tr>
<th>Era</th>
<th>Formation/Intrusion</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triassic</td>
<td>Manassas (New Oxford) Formation, red sandstone</td>
<td>4,500 ft</td>
</tr>
<tr>
<td></td>
<td>and shale, limestone conglomerate; diabase</td>
<td>(1,372 m)</td>
</tr>
<tr>
<td></td>
<td>sills and dikes</td>
<td></td>
</tr>
<tr>
<td>Permian</td>
<td>Dunkard Group, shale, siltstone and sandstone</td>
<td>200 ft</td>
</tr>
<tr>
<td></td>
<td>lenticular limestone</td>
<td>(61 m)</td>
</tr>
<tr>
<td>Pennsylvanian</td>
<td>Monongahela Formation, claystone, sandstone and</td>
<td>375 ft</td>
</tr>
<tr>
<td></td>
<td>coal beds, Conemaugh Formation, claystone,</td>
<td>(114 m)</td>
</tr>
<tr>
<td></td>
<td>shale, sandstone and thick coal beds, Allegheny</td>
<td>900 ft</td>
</tr>
<tr>
<td></td>
<td>Formation, claystone, siltstone, sandstone and</td>
<td>(275 m)</td>
</tr>
<tr>
<td></td>
<td>coal beds, Pottsville Formation, conglomerate,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sandstone, some coal beds, 60 ft</td>
<td>(18 m)</td>
</tr>
<tr>
<td>Mississippian</td>
<td>Mauch Chunk Formation, red and green shale, and</td>
<td>800 ft</td>
</tr>
<tr>
<td></td>
<td>sandstone, 800 ft (244 m). Greenbrier</td>
<td>(31 m)</td>
</tr>
<tr>
<td></td>
<td>Formation, argillaceous to arenaceous limestone,</td>
<td>300 ft</td>
</tr>
<tr>
<td></td>
<td>Purslane Sandstone, white, coarse-grained</td>
<td>(91 m)</td>
</tr>
<tr>
<td></td>
<td>sandstone and conglomerate, 250 ft</td>
<td>(76 m)</td>
</tr>
<tr>
<td></td>
<td>Rockwell Formation, arkosic sandstone, shale, and</td>
<td>1,300 ft</td>
</tr>
<tr>
<td></td>
<td>thin coal beds 1,300 ft (396 m).</td>
<td></td>
</tr>
<tr>
<td>Devonian</td>
<td>Hampshire (Catskill) Formation, red shale, and</td>
<td>3,800 ft</td>
</tr>
<tr>
<td></td>
<td>sandstone, Chemung (Foreknobs Formation), sandstone,</td>
<td>(1,158 m)</td>
</tr>
<tr>
<td></td>
<td>conglomerate with red beds, 1,900 ft (580 m).</td>
<td>(580 m)</td>
</tr>
<tr>
<td></td>
<td>Brallier Formation, black, fine-grained sandstone</td>
<td>2,200 ft</td>
</tr>
<tr>
<td></td>
<td>and gray shale, 2,200 ft (660 m). Harrell Shale,</td>
<td>(660 m)</td>
</tr>
<tr>
<td></td>
<td>dark gray to black shale, 278 ft</td>
<td>(85 m)</td>
</tr>
<tr>
<td></td>
<td>Mahantango Formation, thin-bedded, olive gray</td>
<td>1,230 ft</td>
</tr>
<tr>
<td></td>
<td>shale, some sandstone, 1,230 ft (375 m). Marcellus</td>
<td>(375 m)</td>
</tr>
<tr>
<td></td>
<td>Formation, gray to black shale, 575 ft (175 m).</td>
<td>(175 m)</td>
</tr>
<tr>
<td></td>
<td>Needmore Formation, black, carbonaceous shale,</td>
<td>490 ft</td>
</tr>
<tr>
<td></td>
<td>490 ft (150 m). Ridgeley Sandstone, calcareous,</td>
<td>(150 m)</td>
</tr>
<tr>
<td></td>
<td>quartzitic sandstone, 160 ft (49 m). Shriver Chert</td>
<td>(49 m)</td>
</tr>
<tr>
<td></td>
<td>dark gray to black chert and cherty shale, 14 ft</td>
<td>(4 m)</td>
</tr>
<tr>
<td>Devonian/Silurian</td>
<td>Heldberg Formation, limestone, shale and</td>
<td>200 ft</td>
</tr>
<tr>
<td></td>
<td>chert, 200 ft (61 m). Keyser Limestone, dark gray,</td>
<td>(91 m)</td>
</tr>
<tr>
<td></td>
<td>nodular limestone, 300 ft (91 m).</td>
<td></td>
</tr>
<tr>
<td>Silurian</td>
<td>Tonoloway Limestone, gray, laminated limestone,</td>
<td>600 ft</td>
</tr>
<tr>
<td></td>
<td>600 ft (183 m). Bloomsburg Formation, red siltstone</td>
<td>(183 m)</td>
</tr>
<tr>
<td></td>
<td>shale and argillaceous limestone, 35 ft (10 m).</td>
<td>(10 m)</td>
</tr>
<tr>
<td></td>
<td>Rochester Shale, calcareous shale and argillaceous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>limestone, 250 ft.</td>
<td></td>
</tr>
<tr>
<td>Ordovician</td>
<td>Juniata Formation, red siltstone, shale and sandstone</td>
<td>500 ft</td>
</tr>
<tr>
<td></td>
<td>500 ft (152 m). Martinsburg Formation, dark gray</td>
<td>(152 m)</td>
</tr>
<tr>
<td></td>
<td>to black siltstone and shale, 2,500 ft (762 M).</td>
<td>(762 M)</td>
</tr>
<tr>
<td></td>
<td>Chambersburg Formation.</td>
<td></td>
</tr>
<tr>
<td>Ordovician/Cambrian</td>
<td>Conococheague Limestone, dark blue, argillaceous</td>
<td>1,900 ft</td>
</tr>
<tr>
<td></td>
<td>and siliceous limestone, 1,900 ft (580 m).</td>
<td>(580 m)</td>
</tr>
<tr>
<td>Cambrian</td>
<td>Elbrook Limestone, laminated, argillaceous</td>
<td>2,000 ft</td>
</tr>
<tr>
<td></td>
<td>limestone, 2,000 ft (610 m) Weverton and Loudon</td>
<td>(610 m)</td>
</tr>
<tr>
<td></td>
<td>Formations, gray quartzite and conglomerate, 425 ft</td>
<td>(130 m)</td>
</tr>
<tr>
<td>Cambrian/Precambrian</td>
<td>Harper’s Ferry, siliceous siltstone, 2,000 ft</td>
<td>2,000 ft</td>
</tr>
<tr>
<td></td>
<td>2,000 ft (610 m). Weverton and Loudon Formations,</td>
<td>(610 m)</td>
</tr>
<tr>
<td></td>
<td>gray quartzite and conglomerate, 425 ft (130 m).</td>
<td>(130 m)</td>
</tr>
<tr>
<td>Metamorphic and igneous rocks of the Piedmont:</td>
<td>Lower Paleozoic - Sykesville Formation, schist</td>
<td>2000 ft</td>
</tr>
<tr>
<td></td>
<td>with blocks of Peters Creek Formation and other</td>
<td>(610 m)</td>
</tr>
<tr>
<td></td>
<td>rocks. Georgetown igneous complex, gabbro,</td>
<td>(610 m)</td>
</tr>
<tr>
<td></td>
<td>amphibolite, quartz diorite.</td>
<td>(610 m)</td>
</tr>
<tr>
<td></td>
<td>Precambrian - Catoctin metabasalt and metaeryolite,</td>
<td>2000 ft</td>
</tr>
<tr>
<td></td>
<td>epidote rich, some tuffaceous phyllite. Swift Run</td>
<td>(610 m)</td>
</tr>
<tr>
<td></td>
<td>Formation, sericitic quartzite and phyllite.</td>
<td>(610 m)</td>
</tr>
<tr>
<td></td>
<td>Peters Creek Formation, phyllite, schist, mica</td>
<td>(610 m)</td>
</tr>
<tr>
<td></td>
<td>gneiss, metagraywacke. Biotite granitic gneiss and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>granidioritic gneiss.</td>
<td>(610 m)</td>
</tr>
</tbody>
</table>
STRUCTURES OF THE CANAL

Most of the canal structures were made of stone or earth. As far as possible the canal was designed to permit excavation in soil and weak shale. The architecture of the canal represents unique uses of otherwise common structures. These include:

Prism - The water channel of the canal was generally 50 to 60 feet (15-18 m) wide at the top and 6 feet (2 m) deep. Embankments were made from materials excavated from the prism except in several areas from Hancock to Pawpaw where the material was obtained in West Virginia and transported across the river on temporary bridges.

Dams - Dams were used to raise the river to the water level of the canal so that water could be fed into the canal. Initially most of the dams were timber cribs filled with gravel and sheathed with planks. During and after the Civil War, Dam Nos. 4 and 5 were rebuilt as masonry structures. Dam No. 8, at Cumberland, was originally a masonry structure. Dam Nos. 1 and 2 were rubble, brush and other debris placed in the river. All dams had bedrock foundations. Dam No. 7, planned near Pawpaw, was not constructed.

Locks - The lift locks on the canal were ordinary Pound locks with 100 feet (30.5 m) long chambers for boats (Figure 2). The chambers were 15 feet (4.6 m) wide. Lift ranged from 3 to 10 feet (1 - 3 m). Locks were built of dressed stone or rubble backing with timber faces. Lock gates were of the swing type; head gates of several locks were converted to drop gates in the 1870s. In the early 1880s, 14 locks were lengthened to 200 feet (61 m) by timber extensions. Footings for the locks on soil foundations (Figure 3) consisted of 12-inch (30 cm) timbers, a foot (30 cm) apart, placed longitudinally along the walls of the structure. These were overlain by transverse timbers. The timbers were covered with 3-inch (7.5 cm) planks and stonework placed upon them. All the timbers were laid so as to be wet permanently.

FIGURE 2 Plan of a Lock.

FIGURE 3 Cross Section of a Lock.
Culverts and Aqueducts - It was the practice of the canal engineers to keep streams from draining into the canal. The canal was carried across streams by single arch, masonry culverts. Aqueducts crossed larger streams. The arch in the barrel of most culverts was rubble bonded by cement. Faces of the culverts and aqueducts were dressed masonry. Earthen embankments bound the prism over the culverts. Footings for culverts and aqueducts were similar to those for locks. Stone for most structures was obtained locally except for a few locks and culverts in the Georgetown area where Aquia Creek freestone, quarried 35 miles (56 km) south of Washington, was used.

![Profile of a Culvert or Aqueduct](image)

FIGURE 4 Profile of a Culvert or Aqueduct. A-a' skewback, b coping, c parapet, d spandrels, e abutment, k keystone, p pavement, pk 3 inch (7.5 cm) plans, r ringstones (archstones), wt water table or belt.

Wastes - These structures were used to control water levels in the prism. Surges of water from emptying of locks were discharged through the wastes. The wastes were used to maintain a current of 2 miles (3.2 km) per hour downstream to aid loaded boats going down from Cumberland. They also were used to empty the canal for repairs. Originally, the wastes were overfall spillways. These were replaced by standard, 3-gate weirs with insert boards and wicket gates.

Stop Gates, Stop Locks and Guard Locks - These structures were placed in the canal to divert floodwater and to cut off flow in the prism if a breach occurred in an embankment. Swing gates, drop gates and insert timbers were used in these structures.

Towing Path - The towing path was on the riverside of the canal except for a short stretch in Georgetown. The path was 12 feet (3.7 m) wide and had a natural surface until the 1870s when crushed stone was added. Canal terminology cited the embankment bounding the prism opposite the towing path as the berm.

Canal Boats were about 90 feet (27.5 m) long, 14.5 feet (4.4 m) wide and had a draught of less than 6 feet (1.8 m). The largest boats carried about 100 tons of cargo, mainly coal. The boats were privately owned until 1889. Each boat was operated as a family affair paying toll to the Canal Company and collecting freight charges from the shipper. After 1889, a contract was let by the Canal Company with one company to supply boats and operate them. Horses pulled the boats until an epidemic struck the teams. Afterwards teams of two mules supplied the motive power in relays with another team housed on board the boat. Locks required 10 minutes for passage. A trip from Cumberland to Washington took a week.
What lies along the canal? At present it is one of the few 19th century American canals that are nearly intact; only the last mile at Cumberland has been altered by flood control work. The canal is a geological laboratory extending 184.5 miles (294 km) across the Piedmont, Blue Ridge, Great Valley and the folded Valley and Ridge provinces. The canal is a display of early engineering. Its 182 culverts, 11 aqueducts, six dams and 74 locks are fine examples of 19th Century’s engineering practices.

William E. Davies
15 July 1989
WASHINGTON BRANCH

Until the late 1870's the eastern terminus of the C & O Canal was its junction with the Washington City Canal at 17th St. and Constitution Ave.. The Washington City Canal connecting the Potomac and the Anacostia Rivers was constructed between 1791 and 1815. The canal was used very little and by the time of the Civil War it was a polluted, silt-filled ditch that was an eyesore along the Mall west of the Capitol. Between 1874 and 1886 it was roofed over to form part of the Tiber Creek Sewer west of the Capitol and filled in elsewhere.

The Washington Branch of the C & O Canal was 1.3 miles long and much of it was constructed on embankments on the tidal flats along the east bank of the Potomac River. The northern end of the branch canal connected with the main canal at the Rock Creek Basin.

West of 17th St., the Washington Branch trended slightly north of
Constitution Ave., skirting the base of the low hill west of 23rd St.
in the area now occupied by the approaches to the Roosevelt Bridge.
Curving to the north, it followed roughly along the route of the present Rock Creek Parkway, past the Kennedy Center, to a junction with the C & O Canal at the bend in the Rock Creek Basin, 100 feet from the dam and tidelock. The route is now usurped by Constitution Ave., the approaches to the Roosevelt Bridge, and the Kennedy Center.

At the 17th St. terminus there was a lock (Lock B) connecting with the Washington City Canal and to tidewater. Bridges crossed the canal at 17th, 22nd, D, and G Streets and there was a stop lock at 27th St. and wharves at 17th and 27th Streets. A culvert passed beneath the canal at 21st St.

Construction on the branch started in 1832 as part of an agreement for subscription of $1,000,000 to the C & O Canal by the City of Washington. The branch was opened for service in 1834. The C & O Canal Company deferred maintenance on the branch and by 1849 the
of the canal was so silted that navigation was difficult; by 1860 the canal was filled with sediments 2 to 6 feet thick and operations ceased. Most of this came from freshets in Rock Creek, drainage from sewers and streets, and from coal tar refuse deposited by the gas works near the Rock Creek Basin. The towpath along the Washington Branch was leased in 1866 to Henry H. Dodge for use as a wagon road.

The lockhouse on the southwest corner of 17th St. and Constitution Ave., built in 1837, is the only structure associated with the branch that is intact. It is 1 1/2 stories high and is faced with matched rubble and some dressed stone, mainly light gray sandstone, garnet schist, and gabbro (dark igneous rock). The lentils over the doors and windows are cut Aquia Sandstone. The house is now used for public lavatories.

Map pg. size, draft at 2X.
GEORGETOWN TO SENECA

Distances are measured from the tidelock and are based on Chesapeake and Ohio Canal Company surveys of 1835, 1851, 1870, miscellaneous construction surveys, and B. F. Mackall, T. L. Patterson surveys 1896 - 1898. Distances based on mileposts erected by the National Park Service are shown in parenthesis where they differ from those of the canal company.

MAP OF GEORGETOWN, Tidelock to Aqueduct Bridge; use Hopkins Atlas as a base with reduction; detail from p 7 Georgetown Waterfront and map of 1851.

1. Anacostian Indian village near monkey Rock Cr. - may have been in Va.

0.00 TIDELOCK 3.5 ft. lift, constructed 1828 - 1831. The Tidelock was built of Aquia freestone with granite backing but the chamber now consists of granite, garnet schist, some Seneca red sandstone rubble masonry with brick and concrete repairs. The lock is founded on piles with timbers bolted to the top of the piles and planking over the timber forming the footing for the masonry. A footbridge formerly
crossed the tidelock. Ruins of an old gravity dam are on the south
take. The first dam completed in 1831 was a low gravity
dam with a waste weir (Waste no. 1). The present dam was built in 1869
after the Washington Branch Canal was abandoned. It was 100 ft. long
consisting of a concrete wall on the north extending 25 feet to 6
timber frames with paddle gates. At the south end there was a gravity
50 ft. long
dam but this was partially removed in the 1930's to increase flow in
Rock Creek for the abatement of pollution from sewage.
All but 1/4 of north end of dam washed out.

The MOLE, built 1829-31, extends west from the tidelock 1080 ft.
along the Potomac River. The lower end is occupied now by the Harry
T. Thompson Boat Center and the western part is a lumber yard. When
the canal was in operation, large timber cranes with horizontal booms
extending over the river, occupied most of the mole and were used to
unload coal barges for transshipment into schooners.

Washington Harbour - condominiums & offices 1983-86

A BASIN along Rock Creek was built in 1831 as an unloading area
for canal boats and some timber crib walls can be seen on the banks of
the creek. The West Station of the Washington Gas Light Company, erected 1858, dismantled 1949, was on the east side of the basin below K Street. Before the canal was constructed, K Street crossed Rock Creek on a 3-arched bridge, 135 ft. long, built in 1792 (Emery 1938). This was replaced by a timber bridge upon construction of canal. This bridge was raised and rebuilt in 1836 and was replaced by an iron truss in 1869. A steel through plate girder span was built in 1906-07 and was in service until 1940 when the present K Street Bridge was built. This span was modified in 1948-49 and 1963-64 in connection with development of Whitehurst Freeway. A crossover bridge for the towing path was beneath the K Street Bridge in the 1870's. To the east, between branches of freeway, are 4 old limekilns operated from 1833 to 1908 by Eli Wade and William H. Godney (Aetna Lime Kilns 1864-1908); limestone used in kilns brought by canal from quarries in the Triassic limestone.
conglomerate in the Monocacy area and from quarries in West Virginia near mouth of Antietam Creek.

Plan of basin, mole, tide lock and dam—8"x10" drawing reduce to 3"x4" approximately.

0.37

LIFT LOCK 1 The canal proper begins 1800 ft. north of the mouth of Rock Creek and Lock 1 is 150 ft. west of Rock Creek. The lock has a lift of 8 ft. It was constructed 1828-30 but it was taken down and rebuilt in 1830 after a defect was found in side wall. The chamber and coping are Aquia freestone with blocks of schist and bricks used in repairs; some light gray, coarse-grained granite is in coping on north side at lower gate recess. The wing wall on north side of the canal from Rock Creek to the lock contains Seneca red sandstone, Aquia freestone, schist and brick. The curving wall on south is built of schist.

Canal Company records indicate a contract for a lockhouse at Lock 1 was made in 1831 but there is no indication of its construction. Shanty on south side, head of lock

Towing path Lock 1 to 29th St v to Rock Creek's tech.
Between the lock and Rock Creek, on the towing path, is a large boulder of schist on which has been placed the National Historical Marker for the canal. [The Washington New brick building -

Gas Light Company building, on north side of towing path, is faced with buff gray, medium-grained, pebbly Aquia Sand-
stone (freestone); quartz grains are subangular and rounded pebbles with diameters up to 2 1/2 inches are conspicuous on the north side of the canal at Lock 1. The building is on the site of an early plant of George-
town Gas Company, [and was built in 1928] A wall of rubble and mortar, topped with cut red sandstone on the north side of the canal from Lock 1 to Lock 2.

0.42 LIFT LOCK 2 8 ft. lift, constructed 1828-31, re-
built 1886. The chamber and coping are mainly Aquia Sand-
stone; gabbro, schist and brick were used in repair. The Aquia Sandstone in the west wing wall is deeply weathered and worn and much of it in the east wall has been replaced by concrete. The 29th St. (Greene St.) bridge over the tail of the lock was originally a stone arch completed in 1831. It was rebuilt in 1866-67 as an iron span and the...
present reinforced concrete slab bridge was built in 1929.

An old iron railing, with 1 x 42-inch round rod balusters and 1 3/8 x 42-inch round posts, is on the southwest wing.

The towing path switched from the south to the north side of the canal at this point and the bridge was used to cross the canal. An incline from Lock 1 to the level of the bridge, used in the crossover, is on the south side of the canal. The sloping wall on the north bank, east of the wings of bridge at tail of Lock 3 are Aquia Sandstone. Lock 2 is on south side, concrete and dry-coursed rubble, brick walls; mortar on top of side (north).

lock, is dressed Seneca red sandstone at the top and coursed rubble x some brick. On the north the wall is of similar material with mortar, rubble of gabbro and schist below. Canal Company records indicate that a lockhouse was built in 1831 between locks 2 and 3 but no evidence of such a house is now visible. Between Locks 2-3 the wall on the south is concrete, dry coursed rubble x some brick. On the north the wall is of similar material with mortar, rubble of gabbro and schist below. Canal Company records indicate that a lockhouse was built in 1831 between locks 2 and 3 but no evidence of such a house is now visible. Between Locks 2-3 the wall on the south is concrete, dry coursed rubble x some brick. On the north the wall is of similar material with mortar, rubble of gabbro and schist below.

LIFT LOCK 3 8 ft. lift, constructed 1828-31. The chamber coarse-grained granite, and Aquia Sandstone with a few blocks of schist and gabbro; the granite is dominantly quartz and feldspar with few dark minerals; Aquia Sandstone is buff colored in the chamber and dirty gray in the coping.

Touring path from Lock 3 to Lock 4 formerly cobble stones - replaced a brick east end of Lock 3 - bust of Justice Douglas - dedication May 1971.

Touring path Lock 1 to Georgetown Plaza: brick
The wing wall in basin below the lock is Aquia Sandstone and the wall along the towing path in lower basin is schist and gabbro with a few blocks of Seneca red sandstone. The Each gate in the lock contains two paddle valves.

The 30th St. bridge, over tail of lock was built 1830-31 as a stone arch of Aquia Sandstone with a 40 ft. span. It was rebuilt 1866-67 as an iron bridge and present reinforced concrete span was constructed in 1929. An old railing, similar to that on the 29th St. bridge, is on the southwest wing of At the northeast side of the bridge is an old stone sewer in the north wall of the canal. The wings of the bridge are Aquia s.s.

The bridge, The Brick warehouse, on the southwest corner of the canal at 30th St., the former Duvall Foundry, now Foundry Shops, constructed about 1856 by William T. Duvall, who operated it until about 1870. It was used as a veterinary hospital at end of 19th Century and from 1954 until recently it was owned by the Washington Gas Light Company (USCFA, 68). The wings at the head of lock 3 are built of Aquia sandstone, gneiss, red s.s., and brick. The wall on the south, between locks 3 and 4, is similar material, coursed and laid dry. The towing path wall is similar but with mortar (some). The chamber is Seneca red sandstone with cut blocks of schist.
at the west end and granite blocks at lower gate recess.

Slots for step planks at upper end of lock.

Blocks, 6 ft. long, 3 ft. wide, of Aquia pebbly sandstone are in the coping and parts of the chamber. Prominent

Peaks above Lock 4, revetment on south, course dry wall, rubble of schist, gneiss, and gabbro, on top of side wall of same material, some pebbles with mortar.

grooves, cut by tow ropes are in the coping at upper gate recess. The wing wall at tail of lock is Seneca red sandstone and gabbro. The walls along the peak above Lock 4 are course, dry rubble of schist, gneiss and Aquia Sandstone, and the revetment wall between Locks 3 and 4 is course rubble of Seneca red sandstone,

Schist and Gabbro. In lieu of a flume or waste weir, excess water is fed into and through the lock by a small slot in addition to the slot gate, each lock gate has two paddle valves. A slot, 6 inches wide, for boards of a step gate are at the head of the lock.

waste gate at top of the upper berm lock gate. The Thomas Jefferson St. bridge is at the tail of the lock; originally a stone arch bridge built 1830-31 of Aquia sandstone, it was replaced by an iron span in 1866-67. The present reinforced concrete slab bridge built in 1929. This bridge has a railing similar to that on 29th and 30th St. bridges.

The towing path from Lock 4 west to 31st St. is paved with rounded sandstone and quartzite cobbles, up to 6 inches in
diameter, obtained from river terrace deposits.

0.60 31ST. ST. (CONGRESS ST.) BRIDGE This bridge was constructed 1830-31 as a stone arch bridge of Aquia sandstone and was replaced by 2 iron spans with an iron pier in the center of the canal in 1866-67. The present 2 span steel girder and reinforced concrete bridge was built in 1929. The guard post on the northwest end of the bridge, 8 x 8 inches square, cut from schist, has prominent grooves near the base. The Towpath Apartments, on northeast side of the bridge along side the towing path, were constructed of brick about 1830 by the Canal Company for use as storage building. They were later used as a tavern and then as a stable for horses or mules working the canal with quarters for the drivers on the second floor. Use as a stable continued until 1941 after the canal ceased operations and conversion to apartments was made in 1941 (USCFA, 68). Canal Square along the towing path west of the bridge was reconstructed.
from an old warehouse in 1969-70. Schist rubble facing is in the lower part of the building and brick above. 25 ft. west of the bridge, on the side of towing path, are two large subrounded boulders, up to 3 ft. diameter, derived from river terraces. 25 ft. west of the 31st St. bridge, on the towing path, is a square concrete alcove which serves as stall for mules waiting to be hitched to barge canal boat when it operates on the lower part of the canal.

0.61 WATER INTAKE

0.67 WISCONSIN AVE. (HIGH ST.) BRIDGE Constructed 1830-32, circular (segmental) stone arch, 54 ft. span, 11 ft. rise with 44 rusticated ringstones and keystone. The ringstones and coping are gray to buff colored, medium grained, pebbly Aquia sandstone with pebbles are up to 1 inch in diameter. The ringstones are cut and edges rusticated but they are now deeply weathered. The inner spandrels and parapet are rough-dressed Aquia sandstone. The abutments, 6 tiers (6 ft.) high, are made of cut, rusticated
Aquia sandstone, now deeply weathered to a dull powdery surface. A buttress on the southeast side is also Aquia Sandstone. The wings on the southeast side are coursed rubble of gabbro, schist and brick. Railings on the bridge have round iron balusters, spaced 6 inches, with 18 or 19 per section between round posts. The center post has 2 iron rods with curled tops rising 3 ft. 4 inches above railing; end and corner post are 22 inch square columns of Aquia sandstone with a 2 ft. square cap topped by a metal ball; the post on southeast has been replaced with concrete. The keystone on the east side is inscribed O.H. Dibble, Builder, 1831; the keystone on the west bears the date 1831. Small plaque on wall above keystone: "John Cox, mayor, James Duval, granodiorite in walls at bridge - some rusted garnets. guess?"

Two stone plaques are on the east spandrels. They are rectangular, 3 ft. high x 4 ft. wide, enclosing an oval area of inscriptions; the plaque on north over towing path is dedicated to Andrew Jackson, President of the United
States, and Charles F. Mercer, President Chesapeake and
Ohio Canal Company; other names are not legible. The
plaque on the south is dedicated to Thomas F. Purcell,
Superintending Engineer, F. (?). O. Williams, Assistant do.;
Filbert Rodier, Michael Corcoran, ___ Mann, Clement Smith,
Treasurer Ches. & Ohio C. Co. A rectangular stone 16
inches high by 3 ft. long, on west parapet between the
keystone and the coping is inscribed to John Cox, Mayor of
Georgetown, James Dunlop, Recorder.

on the deck-level of the A stone monument on Wisconsin Avenue, [ea] northwest
side, [footbridge] was cut from Cockeysville marble quarried
near Baltimore. The monument consists of a pedestal, and
column surmounted with a pointed shaft and was originally
erected in 1850 to commemorate completion of canal to
Cumberland; the northeast face is inscribed with the names
of the President and Directors of the company; the south-
east face contains names of the Maryland agents

(15)
west face has the name of Benjamin Wright, first Chief Engineer of the company and a citation on the start of the canal in 1828; the southwest face contains the name of Charles B. Fisk, Chief Engineer at time of completion of canal. The monument, dismantled in 1900, was stored and forgotten in the basement of the George Hill Paper Company but was found in 1927 when the District of Columbia Paper Company purchased the building. It was erected on the present site by executors of Hill's estate.

Walls along the towing path for 100 ft. on either side of the bridge are gabbro rubble containing prominent clusters of mica a quarter-inch in size and rusty red garnets. The wall is 25 ft. high on east and 15 ft. high on west.

The berm, on south side of canal from Wisconsin Ave. (High St.) to 34th St. (Frederick St.), was enlarged to 20
ft. width in 1831 to accommodate unloading of barges but later much of it was occupied by warehouses.

0.68 100 ft. west of Wisconsin Ave. bridge, is an outcrop of dark gray to black, coarse-grained boulder gneiss (Sykesville Formation) which forms low ledges on south side of canal; 2 sets of joints, N10°E vertical; N30°E dipping 45° to southeast are present.

0.69-0.75 The high wall along the towing path is skintled, coursed rubble and course ranged blocks of smooth face on back; Headers protrude 18 in. along canal - gabbro and gray schist. The wall is 40 ft. high and 20 ft. above the towing path is a prominent line of headers spaced 10 ft. apart and protruding a foot. The old brick warehouse, Washington Jet, later store for Georgetown RR, was converted to Capital Traction power house in 1890. Another similar warehouse across canal. The warehouses are connected by a bridge of skeletal Pratt trusses and another enclosed iron truss. Parts of the building on the north entrance to store park line and a range is segmented. 2 storeys, 19, 15' span, 14'6" high, 15'6" straight eave, 2" channel, gable, - gable.

Old bridge between Wisconsin Ave. and canal, in condition poor and unsafe. Old cable bridge replaced with steel through truss.
side date back to 1823 when it was used as a tobacco ware-
house. In 1854 it was a stable for a horse drawn omnibus
line. Later it was enlarged for use as a street car repair
shop and was used as such until 1963 (USCFA, 68). A 14-inch
iron pipe intake for utilizing canal water for power is
entrance to Kingsport Park shops and Broadway Ave, east end of high wall.
75. 10,000 Broadway Ave, opening from ramp. 10 high, filled with soil outside
near the east end of the building on the berm (south side).
Outcrop on south side of canal. 100 ft long. 5-8 ft high (stonework), berm
beam (ledger) bridge. Entrance arch is segmental, stone base. 19 rings, stone, 13-plain
of stone, 10th internal; stone: granite, schist; opening cut in high wall.
A deposit of terrace gravel, 4 ft. thick, overlain
by man-made fill can be seen beneath the floor of building
supported on concrete columns adjacent to the towing path.

The gravel contains water-worn cobbles of sandstone and
quartzite up to 4 inches in diameter; thin silt and gravel
beds lie below the upper gravel bed.

Washington Market
Once a flour mill

0.79 POTOMAC STREET FOOTBRIDGE a Pratt pony (open)
truss, crosses the canal to the Wilkin Rogers Milling Co.
built about 1877
at Grace St. A water intake, with iron slat guards, is on
berm at the west side of bridge; another intake 40 ft. to
west, has a concrete frame and formerly fed water to the flour mill which was built about 1832 by Col. George Bromford. It was destroyed by fire, September 1844 and a cotton mill was erected on the site 1845-47. This was converted to a flour mill in 1866, rebuilt 1883 and continued operations until 1913. It was altered in 1922 by the Wilkin-Rogers Milling Co. for use as offices. Culvert 1879-80: Flour Mill Condominiums, new brick building to west.

A, built 1830, a wooden conduit, 2½ ft. diameter, 122 ft. long, passes under the canal just west of bridge. It formerly connected with sewers draining areas in vicinity of 36th and N. Sts. and Wisconsin Ave. Rubble wall for S oft. to Market House, formerly scholar "gabb"-matched - along prism sides of temple.

OLD MARKET HOUSE Between Potomac St. and Cedar Alley over a plowment.
The first market was built in 1795 but construction of the canal cut the market site in two and bridges were constructed to link the two parts. The present Market House building was built in 1865 and now is used for other commercial purposes. The dry wall along the towing path extending to

(19)
33rd St. bridge is built of Seneca red sandstone, Aquia sandstone and gabbro. It formerly supported the market building. Waste no. 2, a 2-gate overfall built 1833 was formerly in this area and discharged under a warehouse to a ravine connecting with the river.

This curved chord Parker open (pony) truss was built about 1900. The first bridge at this point was a timber truss built in 1831, the completion of which was delayed because of abutment trouble. An iron and timber truss replaced the timber bridge in 1866-67. The dry wall west of the bridge is mainly gabbro and some schist cut in blocks up to 4 ft. on a side. A concrete and brick water intake was on the berm at the PEPCO substation, 100 ft. west of the bridge.

A low ledge of dark gray, course grained gabbro with prominent flakes of biotite (mica), dull black
hornblende is on the side of the towing path. Prominent joint planes strike N10°E, dipping 65°ESE; N32°E dipping 80°SE; and N74°W dipping 80°SSW. Blasting in this area during construction of the canal hurled boulders weighing up to a half a ton into Georgetown, smashing parts of a house and killing a horse. A turning basin, now filled, was formerly on the south side of canal, east of 34th St.

North side of canal for 200 ft. east of Frederick St. Br. Some well of weathered rubble. 15'-20' high stone sill with a high wall 10'-15' high. Gravel, gneiss, granite, gabbro. Bridge. 4th high concrete abutment of rubble well; dark gray to black, fine-grained gabbro; diorite visible, small green pebbles present. Rubble well in surface of 3rd St. Bridge contains some 7'-Locks gneiss stone, also in well for 200 ft. east of bridge.

0.95 (0.95) 34th ST. (FREDERICK ST.) FOOTBRIDGE and + Coal trestles.

TOwING PATH CROSSOVER A timber bridge was built across the canal here in 1830 and was replaced by a timber and iron bridge in 1866-67. The towing path until 1856 was on the south side of the canal from Greene St. to Frederick St.

In order to facilitate unloading from barges to river boats by way of coal trestles, of which there were 7 or more in use between Aqueduct Bridge and 33rd St. from 1857 to 1887, the towing path was shifted to the north side of the canal.
in 1856 and a timber crossover bridge built opposite 37th St. The bridge was reached by a short incline from the towing path west of the site of the old Aqueduct Bridge. The incline still exists connecting with M St. and it was used in conjunction with the crossover bridge at 37th St. The crossover bridge was used for only a few years and removed about 1861. After 1858 the towing path followed the incline to Canal Rd. and west along Canal Rd. for 0.58 miles to Foundry Branch culvert, which was used to cross under the canal to an incline on the southeast side of the culvert. The incline gave access to the towing path on the south bank of the canal. This method of operation continued until the closing of the canal in 1924 and was used from the restoration of the canal in 1939 until September, 1954 when the 34th St. crossover bridge was restored. After 1858, the south bank of the canal from the culvert east was used as a holding basin for boats leaving or
arriving at Georgetown. The present bridge at 34th St. is a Pratt bowstring open (pony) steel truss. The parts forming the superstructure originally were in the bridge that spanned the canal at 36th St. but were removed when the Whitehurst Freeway was constructed in 1948-49. From 34th St. west to Cumberland, the towing path is on the river side of the canal. The wall along the towing path at 34th St. is gray schist, containing quartz lenses up to a half inch thick, gabbro with salt and pepper texture, some Seneca red sandstone, and several rounded, worn blocks of Aquia sandstone.

Wall of schist, quartz, dark gray & black; some gabbro & Aquia sandstone. Well relocated 1978. Formerly old basin on towing path side to east of 34th St. Bridge.

1,000 KEY BRIDGE Constructed 1920-23 by the Corps of Engineers, U.S. Army, cost $2,500,000, opened January 17, 1923. The bridge originally consisted of 7 reinforced, ribbed arches with open spandrels containing 68,000 cubic yards of concrete. It was 1,791 feet long and up to 72 ft. high above river level. The center span is 208 ft. long.
with two flanking spans on each side of the center span, each 204 ft. long. These spans are flanked by spans 187 ft. long and on the north a span over K St. is 152 ft. long. The approach span over the canal is 85 ft. long and the span near the Virginia shore is 152 ft. long. An eighth span on the Virginia approach was added in 1939. The bridge deck was rebuilt and widened to six lanes in 1957.

2 arches on Key Bridge

A gate, concrete culvert under the towing path, on the east side of the bridge, formerly served as a waste weir. Boulder of dark gray gabbro with grayish feldspar, black mica + hornblende() along towpath - overgrown by trees. Between Key Bridge + old power house. Stone revetment for 100 ft. west of Key Bridge along towpath, then 100 ft. brickwall on grade of towpath.

1.04 CULVERT under the towing path, formerly carried coursed rubble wall on berm of schist and gabbro between Key Bridge + Whitehurst Bridge. Routed water to a small electric generator housed in the turbine and brick building on the river side of the canal. Built by ice company; sold to Washington Florist Co., built in early 20th century.

1.05 WHITEHURST FREEWAY BRIDGES Two bridges, deck girders encased in concrete, were constructed 1948-49.

1959??
1.06 AQUEDUCT BRIDGE Constructed 1833-43, opened July 4, 1843. This structure carried the Alexandria Canal (chartered 1830) across the Potomac River. The original superstructure of the aqueduct was 9 timber queen-post spans with diagonal supports below the spans at each pier. Each span was 114 ft. long, 28 ft. wide, containing a canal trunk 17 ft. wide and 9 ft. deep with a towing path 5 ft. wide. The aqueduct was 1,100 ft. long and had a narrow carriage-way above the canal trunk. The aqueduct cost $575,381 of which $50,000 was for the wooden superstructure and the remainder for piers and approaches. The 8 piers, constructed 1833-41, were gneiss quarried from the banks of the Potomac upstream from the aqueduct. The icebreakers on the upstream side of the piers were granite from Sandy Bay, Massachusetts. The piers extended to bedrock 20 to 35 ft. below the water and rose 30 ft. above the water. The original plan of the aqueduct called for 12 stone archs,
each with 100 ft. span and 25 ft. rise. 3 spans were later eliminated by a 350 ft. causeway on the Virginia side.

Shorter timber spans, however, were used in order to cut costs and speed construction. The northern abutment, on the D.C. side of the river was constructed and owned by the C & O Canal. It consists of 2 stone arches with ringstones, spandrels, parapets and coping of cut granite, now deeply weathered and rounded. The south arch is elliptical with a 40 ft. span, 10 ft. rise, 24 ringstones and a keystone.

The north arch was rebuilt by the Washington and Western Maryland RR (B&O) in 1906-07 to obtain greater clearance and is segmental with a 40 ft. span and 16 ft. rise. The inner part of the arch is concrete with a facing of 34 ringstones of cut granite. Spandrels and parapet are rusticated, scabbled and course rubble of gabbro and gneiss quarried near Foundry Branch. The wings are gabbro and schist coursed rubble.

Until 1856, bridge over entrance to Potomac Aqueduct to carry C&O freight.
During the Civil War, the Aqueduct was commandeered by the U.S. government, May 23, 1861, drained and the bed converted for use as a roadway. A timber bridge was built over the C & O Canal to connect with 36th St. Control of the Aqueduct was returned to the Alexandria Canal Company in 1866 and it was leased on May 16, 1866 to the Alexandria Canal, Railroad and Bridge Company (incorporated October 13, 1867). A new superstructure, 9 timber trusses of the Howe type later reinforced by laminated timber archs, was built on the piers. The lower chords of the truss supported a canal trunk 17 ft. wide and a towing path; a 20 ft. roadway and 4 ft. walkway were on the upper chord. The roadway was carried across the C & O Canal on a timber Howe Truss, 107 ft. long. A timber trestle 173 ft. long carried the roadway above the northern abutment. The bridge was condemned as unsafe in 1886 by the D. C. Commissioners and was purchased by the U.S. government December 31, 1886. The
Alexandria Canal ceased operations in 1888. The superstructure was replaced with 2 iron Pratt through trusses, side by side, 164 ft. long, over the C & O Canal, a 127 ft. iron trestle on the north abutment and 9 iron Pratt deck trusses, each 114 ft. long over the river. The total length of this bridge was 1,313 ft. It had a roadway 24 ft. wide with two 6 ft. sidewalks and the deck was 66 ft. above the river. The bridge was opened April 11, 1888.

Electric railway tracks were placed on the west side of the bridge in 1902. Street cars from Georgetown were brought V2 railways into Georgetown. Street cars from Georgetown in 1922 west side of the bridge in 1902. The bridge was closed on January 17, 1924 with the opening of Key Bridge but the iron superstructure and upper parts of the piers were not removed until the winter of 1933-34. The remainders of all but the southern-most pier were removed in 1962 and the rubble placed in Anacostia Park for foundations of a sea wall.

The iron railing remaining on the northern abutment is of two types: heavy, gothic lancet, fastened to the edge of
the stonework is from the pre-1866 aqueduct; riveted curving straps of iron are from the 1888 bridge.

Sketch of Aqueduct bridge - 3 profiles on 8 x 14-
1843, 1867, 1888-
Doc.

Sketch of railing types - draft at 4" x 8" for reproduction at 2" x 4".

Before construction of the Aqueduct Bridge, transportation across the river at Georgetown was by Mason's Ferry operating from near the foot of 34th St. to Analostan (Roosevelt) Island. The island was connected by a causeway to the Virginia shore. The ferry began operations about 1720 and continued until 1867 (Spratt 1967).

From 1934 to 1948 an iron pony (open) Warren truss crossed the C & O Canal from Canal Road at 36th St. connecting with the northern abutment of the Aqueduct Bridge. This truss was removed when the Whitehurst Freeway was built and used in rebuilding the crossover bridge at 34th St. A
concrete slab for the base of the abutment remains on tow-
path. opposite the end of the Aqueduct Bridge.

1.04 **CULVERT B COLLEGE RUN** Constructed 1830-31. This
was a cylindrical brick culvert, 3 ft. in diameter, re-
placed by a 36-inch cast iron pipe which is part of a storm
sewer. The pipe is exposed on the river side of the tow-
ing path.

1.10 **CROSS-OVER BRIDGE**. From 1856 to 1865 a cross-over
bridge carrying the towing path from the north side of the
canal to the south was on the site of the College Run Cul-
vert. It was a double intersection timber truss about 80
ft. long. The abutment on the north side was part of the
wall along the canal and can be distinguished from the
arrangement of the stone in the wall. The south abutment
was on the towing path and was a stone tower with a ramp
sloping to the east. No evidence of this is now present.
The bridge was removed during the Civil War after the Alexandria Aqueduct was converted to a roadway. After this, the crossover was at the Foundry Branch Culvert.

1.25 OUTCROP ON BERM. Dark gray gabbro, cut by 4 distinct joint planes, is exposed at the base of the concrete wall on the berm. Blasting with black powder for excavation of the canal in this area in 1828-30 caused considerable damage to surrounding structures and large rocks were blown into the foundry adjacent to the canal. The wall on the berm was constructed as a dry wall in 1830-40 by the canal company. It was transferred, along with part of the adjacent street, to the District of Columbia in 1897. The wall was rebuilt in 1916. Outcrop of gray gabbro at base of wall and on ledge along Canal Road. Prominent joint face parallel to canal and sloping down towards east.

1.50 CULVERT C FOUNDRY BRANCH (formerly Deep Branch, Mill Branch) Constructed 1829-30. The culvert has a semi-circular arch with a span of 22 ft. and a rise of 10 ft.
There are 30 ringstones and a keystone of cut Aquia sandstone. The arch has been repaired with brick and has a concrete facing on the north side. The abutments, which are 4 ft. high, and the wing walls and spandrels are coursed schist and gabbro rubble. Iron pipes, 2 ft. in diameter, 20 and 100 ft. east of the culvert, formerly fed water from an impoundment ¼ mile north on Foundry Branch to the old Columbian (Foxhall) Foundry.

Foundations for the old foundry buildings on the river side of the canal east of the culvert are mainly gabbro, schist and some Seneca red sandstone. The foundry consisted of 4 stone buildings housing the molding, casting, boring, and finishing shops. A large 4-story stone building and several shops and houses were on the north side of the canal. Buildings on the south side of the canal were still standing in the early 20th Century, and were used as a distillery and for other purposes after the Foundry closed.
A large wooden ice house of the Independent Ice Company was erected at the foundry in the late 19th Century (Davis 1908).

The foundry was built in 1801 by Henry Foxhall and was one of four foundries in the U. S. supplying ordnance to the Federal government. It was sold in 1815 to General John Mason who had continuous litigation with the canal company during the early construction of the canal because of damage from blasting. The foundry closed about 1856, 7 years after Mason's death.

Consisted of boring mill, cupola house - casting house.

1.52 (1.52) WASTE NO. 2 The original waste was constructed in 1833 as 3 square drains built of schist and Seneca red sandstone rubble and situated under the towingpath between the present overfall and waste weir. The present overfall is a concrete apron, 50 ft. wide with six openings under the towingpath bridge. The waste weir, 40 ft. west, is a concrete frame with 3 screw gates. On the
river side of the towingpath are curving, concrete wing walls which join at railroad; a culvert carries the waste water under the railroad. Dark gray to black gabbro crops out at base of the spillway and along the railroad; 3 joint planes are present, N60°E dip 80°SE, N30°W dip 60°SW, N-S dip 45°W.

1.74 (1.74) CULVERT A brick, circular arch culvert, 5 ft. span, 2 ft. rise; abutment 2 ft. high, under Canal Road empties into the canal.

1.75 (1.75) OLD FOUNDATIONS Schist and gabbro rubble walls on the riverside of the towingpath are probably the remains of an old coal transfer trestle. Not seen in 1975.

1.80-1.90 (1.80-1.90) OUTCROP ON CANAL ROAD Quartz-garnet-mica gneiss with schistose fragments, Wissahickon (boulder gneiss) Formation forms a low ledge; two prominent joints; N60°E and N20°W, both vertical, are present.
2.01 (2.01) **CULVERT.** A brick and rubble arch culvert, 5 ft. span, 2½ ft. rise, is on the berm under Canal Road. Flat slab concrete above culvert along canal.

2.12 (2.12) **OUTCROP ON CANAL ROAD.** Quartz-garnet-mica gneiss with schistose fragments, Wissahickon (boulder gneiss) Formation forms a ledge; two joint planes N62°E, N23°W, both nearly vertical, are present.

2.20 (2.20) **SITE OF INCLINED PLANE.** The rectangular basin, oriented southeast on the river bank and the stone wall at the side of the towingpath are remnants of a former inclined plane (outlet lock). Plans for outlet locks above Georgetown were considered in 1844 and an inclined plane proposed in 1864. The Inclined Plane was constructed by the Potomac Lock and Dock Co. in 1875-76, at a cost of $146,556. It was opened on June 29, 1876 and was leased to C & O Canal Co. January 11, 1877 for $15,000 per year. The incline was 600 ft. long with a drop of 40 ft. on
grade of 1 on 12 for the caisson and 1 on 8 for counterweights on a plane 300 ft. long. The horizontal caisson on the incline carried canal boats afloat in its chamber from the canal to the river. The boats locked from the canal into the caisson at top of incline by way of a drop gate and into the river from caisson at bottom. The caisson was 112 ft. long, 16 ft. 9 inches wide, 7 ft. 10 inches high and weighed 802,000 pounds (401 tons) when loaded.

It was counterbalanced by stone weights of 572,000 pounds (286 tons). The caisson and counterweights ran on sets of rails; moved by wire ropes fed through pulleys anchored in dressed blocks of gabbro at canal level. Power was supplied by a turbine with water from the canal and an auxiliary steam engine. In May 1877 the pulley anchors failed, plunging a loaded caisson and counterweights to the bottom of the plane. 3 men were killed. Afterwards the caisson was operated empty to reduce the stress on the system.
Use of the incline was greatly reduced by a decline in traffic after 1877 and was used only occasionally after 1879. It was damaged in the flood of 1889 and was not restored for operation. It was in place in 1893 but was dismantled in 1908 to provide the right of way for the large gabbro boulders along towing path on west side of incline; dull grey feldspar and dark minerals.

Washington and Western Maryland RR.

2.27 Stop Lock?

3.08 (3.08) CULVERT A brick arch culvert, 5 ft. span, 2 1/2 ft. rise, is under Canal Road on the berm. 10 ft. rubble parapet and coping above.

3.20-3.76 (3.20-3.76) BALTIMORE AND OHIO RR. The Georgetown Branch of the B.&O. R.R. is on the riverside of the towingpath. It was constructed between 1906 and 1909 as the Washington and Western Maryland R.R., a B.&O. subsidiary. It was opened June 25, 1909 and extends from Georgetown to Chevy Chase. From Chevy Chase to the B.&O. main line (Metropolitan subdivision) at Linden near Forest Glen, the branch was built as the Metropolitan Southern
An overfall, constructed in 1833, was formerly 200 to 300 ft. east of the old Potomac Co. locks at Fletchers Boathouse.

Extensive ledges quartz-garnet-mica gneiss with fragments of schist, Wissahickon (Boulder-gneiss) Formation along Canal Road. Cleavage dips 30°W; joints strike N60°E dipping 40°SE, N32°W nearly vertical. Wall of slabs of schist and gneiss rubble along Canal Road.

The culvert and viaduct were constructed in 1829-30. The stream culvert (Maddox-Branch) has a 6 ft. span, 3ft. rise, with 10 ringstones and keystone of cut granite. The rest of the culvert is schist rubble; on the towingpath side the face of the culvert and the section under the railroad are concrete with an arch of the same dimension as the berm.
The abutments are 7 ft. high. The stream culvert under Canal Road is a segmental skew (oblique) brick arch with 10 ft. span, 8 ft. rise, built of 3 tiers of brick in the arch.

The road culvert (viaduct) is 100 ft. to the west of the stream culvert. The berm arch has a 14 ft. span, 7 ft. rise, 2 ft. abutment with 20 ringstones and keystone of cut granite. The spandrils, wings, etc. are dressed gabbro; inner arch is schist rubble. The arch on the towingpath under the railroad is concrete.

The lower end of the Potomac Canal around Little Falls was 100 ft. above the road culvert. 3 continuous locks with common gates were constructed of wood in 1793-95; each lock was 100 ft. long, 18 ft. wide, with 11 ft. lift; These locks collapsed in 1815 and were replaced in 1820 with 3 new locks, each 80 ft. long, 12 ft. wide, built of
Seneca red sandstone. The locks extended from the head of the embayment on the river, known as Lock Cove, to near the present waste weir. Along the spillway, which follows the line of the old locks; some stone walls from the old locks remain. The canal at the head of the locks extended 2 miles west to Dam no. 1. It was 4 ft. deep, 25 ft. wide at the top, 20 ft. wide at the bottom and is now covered by the railroad grade along the lower part. The C & O canal bed is along the line of the Potomac Canal to Lock 5. Ruins of the Cloud-Edes Mill, 200 ft. west of the old locks and 50 ft. on the riverside of the canal, was built in the latter part of the 18th century and operated for about 100 years. Only the foundation of coursed rubble schist and boulder gneiss remains at the head of the old mill race. The millers house on the berm opposite Fletchers Boathouse is roughly coursed schist rubble (Clark 1930). An outcrop of gray schist (Mississippian Formation,
Boulder Gneiss) is at the northwest corner of the parking lot on the berm; schistocity strikes N50°E, dips 30°NW. Ledges and low scarps formed of schist and gneiss are exposed along Canal Road west to mile 4.30, schistocity strikes N45°E, dips 30°NW. A prominent joint dips 40° to the east; a second set of joints is parallel to Canal Road.

Place diagram of area around Fletchers showing old locks etc. in relation to present features. Original draft 8"x10", reduce to 3"x2".

3.31 (3.31) WASTE No. 5 This waste weir is a concrete frame, with 3 gates and insert boards. 2 of the gates have paddle valves at the base. West of here to above Chain Bridge the canal has a liner of plastic sheets to prevent leakage in the area where a trunk sewer was placed in the bed of the canal in 1967.

3.38-4.01 (3.38-4.01) SECTION F The contractor, Jesse Leach & Co., was awarded a silver medal on January 1, 1870 for the first section completed under letting of December
3.55 (3.55) **CULVERT** A brick arch culvert with coursed schist rubble spandrels, etc., is under Canal Road. *Not visible in summer*

3.65 (3.65) **BOULDER** A large boulder on the river side of the towing path, 600 ft. downstream from the B & O R.R. bridge is dark gray schist (Wissachickon Formation, Boulder Gneiss), with quartz, feldspar (plagioclase) and mica (muscovite) well developed; pyrite cubes and garnets up to 1/8 inch size are common; foliation is prominent. The wall between the canal and Canal Road is built of coursed rubble slabs of schist.

3.76 (3.76) **B & O R.R. GEORGETOWN BRANCH, BRIDGE No. 18**

This bridge was built in 1909 as part of the Washington and Western Maryland R.R. It is a single span, steel, through Whipple truss over the canal and a single, skew span, steel, through Pratt truss over Canal Road.
3.77 (3.77) Culvert I. The original culvert was constructed in 1830 and was replaced in 1967 by a 5 ft. concrete pipe. The cut in the stream channel on the river side of the towing path exposes dark gray schist (Wissahickon Formation, Boulder Gneiss) with veins of white quartz; muscovite and chlorite grains are included in the quartz vein. Prominent joints are at N40°E, dip 40°NW; N55°E, vertical; N85°W, dip 60°S; N75°W, vertical; the latter joint has slickensided surfaces. Schistocity strikes N40°E, dips 20°NW.

3.88 (3.88) WASTE (OVERFALL). Originally constructed in 1830, rebuilt 1845, the present overfall, is a concrete apron 300 ft. long. The wall of coursed rubble schist on river side of towing path beneath the concrete apron is a remnant of the original waste. Reconstructed 1974; 139 paces long, 10 ft. wide at top 4 ft. high MP 359.18

4.22 (4.22) CHAIN BRIDGE. The original timber bridge; Quarry along north side of Canal Rd., 300-400 ft. east of Chain Bridge

W. B. Davis Jr., 1937 The History and construction of Chain Bridge: Initiation paper, Univ. Md. Beta Chapter, Tau Beta Pi, (43)
built in 1797 by Georgetown Bridge Company was the first bridge across the Potomac River, replacing a ferry that had operated nearby since 1738. The bridge was a single span, 120 ft. long, across the river channel only. It collapsed in 1804, was rebuilt but burned 6 months later.

In 1808 a timber span, 136 ft. long with iron chain suspension, was built. It was carried away in the flood of 1810. Other bridges using chain suspensions were built between 1794-1815 - grist mill, brewery, distillery, cooper, blacksmith shops at 1810 and 1840, but were carried away by floods. The bridge company was purchased by Georgetown City in 1833 and in 1840 a timber truss was constructed on stone piers spanning the river channel. It was severely damaged by the flood of 1852. A sixth bridge built by U.S. government in 1853, a single span over the river channel only. This was replaced just before the Civil War by an 8 ft. span, through, timber Howe truss with a heavy laminated timber arch enclosed in the truss frame, similar to
Aqueduct Bridge of 1868. It was 1351 ft. long and 46 ft. above river level on stone piers and built of schistose gneiss from the bottom land adjacent to the bridge. This was replaced in 1874 by a bridge built by Phoenix Bridge Co., with 6 through iron Whipple trusses each 172 ft. long and 2 each 160 ft. long on the stone piers of the 1853 bridge. By 1910 the Virginia abutment was undermined but repairs not made until 1928 when the abutment was rebuilt. The bridge was weakened by the 1936 flood and taken down in 1937. The present bridge was opened June 17, 1938. It is an 8-span, continuous deck, haunched plate girder placed on the old stone piers and was built by the Tuller Construction Co. The bridge carries water mains to Virginia below the deck.

The George Washington Memorial Parkway on the berm of the canal extends from Chain Bridge to west of Carderock. It was built in 1962 from Carderock to Glen Echo, and from
Glen Echo to east of Lock 5, in 1966. The short section near Chain Bridge was opened in 1970. 500 ft. west of Chain Bridge, on the berm side of the canal there were carpenter shop and company houses; these were removed for construction of the parkway.

4.45 (6.03 mi. above Chain Bridge) modern culvert, concrete box 8 ft. span (Frantic) reinforced, left high.

4.31 (4.31) OUTCROP ON BERM Gray schist of boulder gneiss phase of Wissahickon Formation forms low ledges along the Parkway. Some parts of the outcrop are highly contorted; quartz and feldspar bands 1-inch thick are prominent and expanded to 2-inch thickness in contorted areas; Schistocity is N40°E, dip 30°NW; prominent joints are N70°E, vertical; N40°E, dip 70°SE; N65°W, vertical; N50°W, dip 60°NE. 100 ft. west joints are N35°E, dip 45°SE; N35°E, dip 45°NW (plumose surfaces); N10°W, dip 80°s.

4.55 389.74 CULVERT A 5 ft. concrete pipe, carries drainage from the Dalecarlia Filtration plant under the
canal. The cut on the river side of the culvert is in gray schist of the boulder gneiss phase of the Wissahickon Formation. Schistocity is N15°E, dip 45°NW; joints are N10°W, vertical; N35°E, dip 35°SE; N15°E, dip 45°NNW. Schist boulders along the towing path contain prominent quartz blebs up to 4 inches on a side. The low escarpment on side of the parkway to the west exposes schistose boulder gneiss, Wissahickon Formation with prominent joints.

4.78 359.94 CULVERT K LITTLE FALLS BRANCH

The original culvert was built in 1830-31. The present culvert, built in 1962, is a 20 ft. flat, concrete coursed rubble span, 6 ft. high. The wings are quartz-mica schist. Numerous schist boulders are in the stream below the culvert.

5.04 (560.18) LOCK 6 Constructed 1830. The lower part of the chamber was originally gneiss and the upper part Aquia sandstone. The lock was rebuilt in 1868 and altered in Swing gates in head of lock. RC79, map #66.
1876 for a drop gate at upper end. The swing gates were apparently substituted for the drop gate in the 1939 restoration. It was seriously damaged in flood of 1877. It was rebuilt in 1878. In rebuilding in 1868 and 1876 granite and gneiss were used in chamber to replace some of Aquia sandstone. Seneca red sandstone was used in circular quoins and lower recess. The coping is now Aquia sandstone and Seneca red sandstone except in the area of the upper gate which is concrete. The breast wall, formerly at lower end of the upper recess was removed for installation of the drop gate. The wall between the lower end of Lock 5 and the Guard Lock to the south is rubble schist and gneiss. The concrete apron on the face of the guard wall between the head of Lock 5 and the guard lock was apparently constructed as part of 1939 restoration. It rises 6 ft. above the former level of the coping. The by-pass for the lock flume is in a culvert on the berm side. A concrete overfall
10 ft. long, 2 ft. high is beneath the towing path, 15 ft. upstream from lock.

The feeder, 150 ft. south of Lock 5 is the former Potomac Co. canal extending downstream from Dam no. 1. It is up to 80 ft. wide and 6 ft. deep with a single set of control gates. Boats using the feeder could pass from the river to the canal but not from the canal to the river because of current in feeder. The gate walls are black schist and gneiss (Wissahickon, boulder gneiss). The stop gate, 600 ft. west of the inlet gates has walls of schist and gneiss. An overfall of rubble capped with concrete is 600 ft. west of the stop gate. Lockhouse formerly on berm at head of lock; removed in construction of Geo. Washington Parkway

As originally planned the eastern terminus of C & O Canal was to be at Lock 5. The decision to extend the canal to Georgetown on August 9, 1828, was based on requirements imposed by subscription to stock by Georgetown and other
The extension was opened late in 1831.

From 1831 to about 1853 the roadway to the Little Falls Bridge (Chain Bridge) crossed the canal on a timber bridge just below Lock 5. The original Lockhouse no. 3 serving Lock 5, was destroyed in the flood of 1852. It was rebuilt as a timber frame house on a masonry foundation at the base of the hill on the berm. It was removed for construction of the parkway. The retaining wall on the parkway is coursed rubble of quartz-mica schist.

BOULDER ON BERM 200 ft. west of Lock 5 is a large boulder of dark gray to black schist (Wissahickon boulder gneiss) with mica pods 1/4 to 2 inches long; quartz is in layers up to 1/2-inch thick; pyrite cubes are up to 1/8-inch on a side. Outlines of elliptical white quartz nodules are prominent on the smooth face of the boulder.

LOCK 6 Constructed 1829-31. The chamber is

Had drop gate RG-79 #66 (map)
Locks 7-19 all swing gates RG-79 #66 (map)

(50)
mainly Seneca red sandstone with some cross-bedded, pebbly Aquia sandstone, granite and gneiss. The upper recess was altered and a drop gate installed in 1876. This was replaced by a swing gate in the restoration of the canal in 1939-40. Lockhouse no. 4 for Lock 6 is on the berm; built in 1831 it was washed away in the freshet of October, 1847. It was rebuilt and is now white-washed rubble schist, 1 1/2 stories high. The flume passes north of lockhouse and has a fixed overfall and concrete bridge at its head.

Large boulders of Wissahickon Boulder Gneiss, mica schist phase are on the berm; pods of mica 1/16 to 1/8 inch in size, veins of quartz and feldspars with quartz pods up to 1/4 inch in diameter are prominent. 4 smooth joint faces are on one boulder, other boulders have 3 joint planes at oblique angles; schistocity planes are distinct.

Flume - rubble wall of $s_s, gneiss(boulder) + schist.$

5.59 SIDE TRAIL Large boulders of gray schist (Wissahickon Boulder Gneiss) with garnets up to 1/8 inch
size; biotite (mica), chlorite, and hornblende of similar size; glassy quartz pods up to 1 inch size are at the end of a short trail leading from the river side of the towing path to the feeder. 3 oblique joint planes are in the schist. Large rounded boulders of white quartzitic gneiss are also present and were derived from river terrace

Feeder entry: Old Potomac Canal, revetted with gray schist, boulder gravel.

Boundary Site of D.C. #3.

CULVERT 2 Constructed 1829. This culvert is 200 ft. east of the Little Falls pumping station. Spandrels and parapet are built of dark gray quartzitic, garnetiferous gneiss rubble; the parapet is 10 ft. high. The culvert is filled to the arch.

DAM No 1 Constructed 1828-30, original cost $40,704. The dam was 1,750 ft. long, 5 ft. high but now it is a crude pile of stone downstream from the concrete dam. The Potomac Company had a small wing dam to divert water to
its canal at this point before 1828 and in 1830 this was extended to an island 855 ft. from Maryland shore, the gap to Virginia shore being filled with brush, stone, and gravel. Later the dam was covered with stone laid in the form of an arch capping the rubble and gravel. The dam was designed to form a pool 6 ft. deep and 2,500 ft. long.

The dam was breached by ice in November, 1832 and by flood June, 1836. It was rebuilt in 1870 after serious damage from a flood in 1868. The 1870 dam was 10 ft. high with a sloping stone front and a back slope filled with gravel and earth. Much of the dam was carried away by ice in 1873 and was rebuilt again. It needed continuous maintenance and leaked so badly that supply for Georgetown level was marginal. After the canal was taken over by the National Park Service the dam was damaged by the flood of 1942. It was repaired and grouted with concrete in 1942. The new concrete dam and water intake was built by the
Army Corps of Engineers as an auxiliary water supply for the District of Columbia in 1956-58 at a cost of $835,013.

This bridge over the canal at the pumping station is a deck haunched concrete girder span with concrete slabs between the girders.

Ground-breaking ceremonies for the canal were held at this point on July 4, 1828.

5.61-5.88 (5.73-6.00) OUTCROP Large boulders of Kensington Gneiss and schist from the Sykesville Formation are on the river side of the towing path, 200 ft. west of the pumping station; quartz, feldspar and weathered biotite are prominent. Numerous gray schist boulders are on the berm.

At (6.00) there is an outcrop on the berm of gray schistose gneiss (Kensington Boulder Gneiss) with prominent joints at N75°E, dip 62°SE; two other sets of joints at right angles; joints along with fracture cleavage cause rock to break...
6.08 (6.18) OVERFALL A steel grated spillway feeds through a culvert under the towing path. 12 ft. long x 3 ft. deep pipe under canal; 3 ft. dia.

6.14 (6.23) OUTCROP ON BERM Dark gray granite... gneiss (Kensington) crops out on the berm. This is the site of the canal company's quarry which was in use up to 1870's.

6.24 (6.31) OUTCROP ON BERM Dark gray schistose gneiss (Kensington) has 3 joint planes, N55°W, dip 45°NE; N25°W, dip 60°SE; N80°W, dip 55°S. The gneiss is weathered to a depth of 5 ft. with a cover of yellow brown sandy silt soil.

6.32 (6.38) FOOTBRIDGE This is a steel, through Warren truss with the towing path pier on a steel tower. ca. 1910

6.41-6.54 (6A5-6.55) OUTCROP ON BERM 150 ft. west of footbridge dark gray schist and gneiss (Kensington) are exposed on the berm; schistocity is N15°E, dip 70°NW;
Irregular nearly horizontal fractures trend N30°E with a slight dip northeast near the west end of the outcrop (6.50); large boulders of gneiss are on berm to west. Schistocity at west end of outcrop (6.55) strikes E-W and dips 45°S.

6.90 OUTCROP ALONG PARKWAY Coarse grained

Kensington granite gneiss with prominent 3 joint planes crops out in low ledges. Boulders of similar rock are in the field south of the towing path.

7.00 ORIGINAL MILE STONE 7 This milestone is made of cut, white Aquia sandstone.

7.02 LOCK 7 Constructed 1829-1830. Mainly granite gneiss (Kensington) obtained from French's quarry on the berm about 1/8 mile east of the lock. There are some dressed blocks of schistose gneiss and gray and bluish gray granite gneiss in the lock; blocks of Seneca red sand-
stone are in the upper recess. The original coping was white Aquia sandstone. The lock was extended and a drop gate placed in the upper recess in 1877. Lockhouse no. 5, on berm 50 ft. north of lock, 1½ stories high, is made of white-washed schist and gneiss rubble. A graded flume is behind the lockhouse, lined with rounded gray gneiss rubble, some gray quartzitic schist, 8 ft. wide x 4 ft. drop.

7.00-7.20 GLENECHO The wooden structures on the bluff to the north of the canal were formerly the Glen Echo amusement park. This park was started in 1889 as a community development and converted to a Chataugua in 1891; from 1893 to 1897 it was a vaudeville park. In 1903 it was purchased by Washington Railway and Electric Co., later Capital Traction Co., for use as an amusement park. It closed in 1968 () and is now being developed by the National Park Service as a recreation and visitors center.

339.47 Single gate, screw works - being wall 10 ft. long, 6 ft. right angles, 25.5° bounds; 1 in each side for frame; 43 ft. diameter and pipe under canal. 5 ft. cement above pipe to 8 ft.
WASTE WEIR This waste has a concrete frame and a single screw gate.

CULVERT 5 MINNEHAHA (NAILORS) BRANCH

Original culvert constructed 1829. This was replaced in 1960's with a concrete arch faced with quartzitic schist; 12 ft. span, 1½ ft. rise, 14 ringstones and keystone in the facing. The parapet rises 2 ft. above keystone.

CULVERT 8 CABIN JOHN CREEK The original culvert was constructed with a segmental arch in 1829-30. It had a span of 22 ft. and a rise of 5 ft. It was rebuilt 1848 and in the 1960's it was replaced by a concrete flat, span faced with dark gray schist. The revetment along the towing path is dark gray, fine to medium grained gneiss (Wissahickon Boulder Gneiss). Cabin John Island between the canal and river is formed of brown silt and sand exposed in 15-foot bluffs along Cabin John Creek. A "granite"
quarry formerly near the mouth of Cabin John Creek was opened in 1830. Schistose gneiss of the Wissahickon Boulder Gneiss was quarried and shipped via canal until the late 1850's (Mathews, 1898).

Cabin John Bridge, 1,000 feet north of canal was built in 1857-63 and its arch was keyed on December 4, 1858. The span is 220 ft., with a rise of 57.26 ft. It was the second longest arch in the world when built. The coping is 100 ft. above the valley floor. Ringstones and the keystone are cut granite from Quincy, Massachusetts. Spandrels are Seneca red sandstone and gneiss from Montgomery County, Md.; the parapet is also Seneca red sandstone. A conduit, 9 ft. in diameter, is on top of bridge and carries water for the District of Columbia (Curtis, 1899).

8.00 OUTCROP ON BERM Dark gray gneiss (Wissahickon Boulder Gneiss) with white quartz veins 1 to 4 ft.
OUTCROP ON BERM

Black gray, fine grained gneiss (Wissahickon Boulder Gneiss) is exposed in a low bluff. Quartz veins up to 4 inches wide cut the gneiss. Schistosity strikes N50E and dips 80 NW. Four joint planes, N50E, dip 60SE; N10W, dip 85W; N30W, dip 45NE; N65W, dip 45SW, are present. 10 ft. south of the quarry path is a large boulder of dark gray gneiss composed mainly of feldspars and microcline-feldspar (mica) with large dark gray, fine grained quartz inclusions in the gneiss.
wide occurs in low ledges. Schistocity strikes N35°E and
dips 70°-80°NW. A joint cuts the rock at N55°E, dip 60°NW.

8.01 (8.04) OUTCROP ON BERM Dark gray gneiss with
quartz veins (Wissahickon Boulder Gneiss) forms low ledges.
Joints at N55°E, dipping vertical; N60°W, vertical; and
N60°W, dip 45°SW are present.

8.13 (8.19) OUTCROP ON RIVERSIDE OF TOWING PATH 1,000
ft. east of Lock 8 there ledges and boulders of gray gneiss
with dark gray, fine grained schist inclusions (Wissahickon
Boulder Gneiss); these ledges are also extensive in the
river. A revetment formed of gray granite gneiss blocks is
along the towing path; quartz, feldspar and biotite (mica)
grains up to 1/4 inch size are in the gneiss.

8.34 (8.38) Lock 8 Constructed 1829-30. The lock is
mainly Seneca red sandstone and some gneiss blocks; brick
repairs are in the chamber. A graded flume is on the berm.
behind the lockhouse. Lockhouse no. 6, on the berm is 1 story high and built of whitewashed coursed schist rubble.

8.42 (8.47) **CULVERT 9** 200 ft. west of Lock 8, constructed 1829-30. The culvert has a segmented arch with a 4 ft. span, 2 ft. and a rise of 8 ringstones and a keystone are in the arch. The abutment is 2 ft. high and the parapet is 6 ft. high. Spandrels and the parapet are coarsed schist rubble.

8.56 (8.59) **OUTCROP ON BERM** Blocky gray gneiss cut by small quartz veins (Wissahickon Boulder Gneiss) forms low ledges. Schistocity strikes N50°E, and dips 70°NW. Joints are at N10°W, vertical; N20°W, dip 45°NE; N70°E, dip 80°SE; N80°E, dip 65°SE; N30°W, dip 10°NE; N55°W, dip 30°SW.

8.72 (8.72) **CULVERT 10** 250 ft. east of Lock 9, constructed 1829-30. The circular arch of this culvert has an 8 ft. span and a 4 ft. rise. 10 ringstones and a keystone of cut stone.
granite form the arch with a springing line at water level.

The parapet is 7 ft. high and spandrels, parapet and wings are coursed schist rubble.

8.70 LOCK 9 Constructed 1829-31. The lock is mainly gneiss from French's quarry just east of Lock 7. Some Seneca red sandstone and Aquia gray sandstone with pebbles up to 2-inch diameter are mainly in the coping. Patches of concrete repairs are also in the coping. The upper recess was extended and a drop gate installed in 1877. A pivot foot bridge formerly crossed the lock.

Masons' marks are on the berm side of the chamber, 15 ft. east of upper recess; a similar but inverted mark is on the berm side of the chamber 15 ft. west of the lower gate.

Lockhouse no. 7, on berm between Locks 9 and 10, is 1½ stories high and is built of coursed schist and gneiss rubble.
LOCK 10 Constructed 1829-31. The lock is mainly granite gneiss with some Seneca red sandstone in the chamber; grains of biotite, feldspar and quartz up to 1 inch in size are distinct in the granite, especially in areas polished by rope drag. The upper recess were extended and drop gate installed in 1877. A graded flume is on the berm. Embankments are from Lock 10 to Lock 13; notice win now upstream.

8.95 CULVERT 12 ROCK RUN Constructed 1829-31. The semi-circular, skew arch has a 12 ft. span and 6 ft. rise. The face contains 12 ringstones and a keystone of cut granite. The abutment, 6 ft. high, is also cut granite. The parapet which is 7 ft. high, spandrels and wings are coursed schist rubble. This culvert collapsed in February, going 20 ft. across stream 1847, and was rebuilt, lengthened, and buttresses added in 1848. Most of the flow of Rock Run was diverted to the west in construction of the beltway (I-495) in 1962 and now passes beneath the canal in a new culvert at mile 9.54.
9.00 (9.00) LOCK 11 Constructed 1829-30. The masonry is
mainly Seneca red sandstone with some coarse-grained,
schistose gneiss in the chamber. Brick and schist blocks
have replaced some of the original stone where repairs have
been made. Very coarse-grained granite, with distinct pods
of biotite and feldspar up to 1/2 inch size, is at the lower
end of the lock below the coping. A graded flume on berm
is lined with red sandstone, gneiss and schist rubble. The
lockhouse is along the towing path and is built of coursed
red sandstone, gneiss and schist rubble. The 9-mile marker
on towing path at the lock is cut white Aquia sandstone.

Masons' marks are on the chamber and recess walls.

\[\text{symbols are on the coping on the bermside near}
\text{the center of the chamber; are 2 to 6 tiers}
\text{below the coping on the berm side near the center of the}
\text{chamber; is on the towing path side on the coping at}
\text{the lower end of the lock; is 2 tiers below the coping} \]
occurs on the third tier below the coping and is on the 4th tier below the coping, 10 ft. east of the lower recess.

A quarry in the bluff along MacArthur Blvd. formerly was worked by the canal company for "granite" (Wissahickon Boulder Gneiss).

Four ledges, 20 ft. high and 200 ft. long are composed of Wissahickon Boulder Gneiss, schistocity strikes N15°E and dips 60°NW. A large boulder of gneiss is on the towing path. Another ledge of gneiss is on the berm at the lower end of Lock 12 with schistocity dipping 30° to 60° west.

LOCK 12 Constructed 1829-30. The lock is mainly granite gneiss from French's quarry east of Lock 7; some Seneca red sandstone is in the coping. This is an old
Type lock in which water entered the chamber from a culvert in the berm wall. The culvert openings are still intact although the upper recess was rebuilt and a drop gate installed in 1877. The Lockhouse was formerly on the berm, 30 ft. north of middle of lock. It was a 2-story, frame building which was removed in construction of the parkway. Only part of the stone footings remain. A graded flume is 50 ft. from the lock on the berm. 3 ft. dug v 6 ft. ind.

9.36
LOCK 13 Constructed 1829-30. The masonry is mainly granite gneiss from French's quarry east of Lock 7. Some Seneca red sandstone is in the circular quoins at the upper and lower recesses. The original breast wall removed in 1877 preparatory to rebuilding the upper recess for a drop gate. The breast wall was later rebuilt at the head of the recess and a long gate was installed. A graded flume is 15 ft. from the lock on the berm. The lock gates and an old pivot bridge over the lock were burnt on June 27, 1863
by Col. J.E.B. Stuart. The flood of 1889 damaged the lock
and carried the pivot bridge away. Lockhouse no. 9 was
formally on the berm, 40 ft. north of the middle of the
lock. It was a 1½-story stone rubble building which was
removed in construction of the beltway. Two girder, concrete
deck bridges over the east end of the lock carry the Capital
Beltway (I 495, American Legion Memorial Bridge) over the
canal. The bridges were constructed 1960-62 and opened
December 31, 1962.

9.45
LOCK 14 Constructed 1829-30. The lock is
built mainly of gray granite gneiss with some Seneca red
sandstone at the west end, berm side. Slots for stop planks
are in the wall at the breast. Rods for control of the
flow to the culverts in the lock walls are at the center of
the upper recess on both the towing path and berm sides. A
single screw gate, concrete frame and culvert waste weir are
on berm side at head of lock feeding to a graded flume.25
Born on law embankment west to 200 ft. west of lock.26
ft. from the lock on the berm. The lockhouse formerly was on towing path side at the middle of the lock. It was a 2 story, frame house; part of rubble foundation remains. The log wall level, named for extensive log revetments along this section of canal, extends west 3.9 miles from Lock 14 to Lock 15.

364.25 - Embankment 25 ft. abm coping.

9.54 CULVERT Constructed early 1960's. The drainage of Rock Run was diverted to this culvert when the beltway was constructed. The culvert has 2 gallery, rectangular concrete conduits, each 10 ft. wide and 10 ft. high. The facing is brown quartzitic schist with white granite coping on the wings. Wissahickon gray schist crops out in the stream bed below the culvert; schistocity is N10⁰W, dip 80⁰W; joints are at N85⁰E., vertical; N45⁰W, dip 10⁰NE.

The David Taylor Model Basin is on berm. Construction was started by the Navy on this installation in 1933.
WASTE WEIR

Originally this waste weir was a concrete frame with 3 gates. Formally two of the gates had paddles but now all the gates are board inserts.

9.66 waste weir (Pratts)
MP/10 364.18

SWING BRIDGE

This bridge was constructed in 1941 by the CCC to give access to the picnic area adjacent to the towing path. Only the circular center pier and abutments remain. The pier is built of blocks of quartzitic schist rubble. A circular rail on the pier formerly supported the swing bridge. The abutments are quartzitic schist.

SITE OF OLD OVERFALL

Originally there was an overfall waste here that drained south via narrow ravine.

9.97 informal overflow 144 ft. long (Pratts)

CULVERT 14

Constructed 1840. The arch is semicircular with a 7 ft. span and a 2½ ft. rise. 8 ringsones and keystone of cut Seneca red sandstone are in the face of the arch. The parapet is 3 ft. high; abutments are

10.22 fencing rails
4 ft. high. The spandrels, parapet and wing walls are coursed schist rubble. An outcrop of Wissahickon gray schist is in the stream, on the south side of the culvert; schistocity is N10°E, dip 70°W; joints are at N70°E, dip 30°S; N70°W, vertical. Originally constructed 1829-30, the viaduct was rebuilt in 1960's. The culvert has a semicircular arch, with a 14 ft. span and a 7 ft. rise. 20 ringstones and a keystone of cut granite are in the face of the arch. The abutment is 6 ft. high. The face of the culvert is battered 1 on 10. The spandrels, abutment, and wingwalls are coursed schist rubble. The pavement in the culvert and and for 15 ft. south of the culvert is dense blue gray to black [migmatitic] gneiss slabs laid on end. This rock is also used in the revetment south of the culvert.
The viaduct over the road to the east of the culvert is a flat concrete span faced with brown quartzitic schist. It was constructed in the 1960's.

10.54 OUTCROP ON BERM Wissahickon gray green schist, schistocity N5°E, dip 68°W, forms low ledges in the canal prism which are visible during low water.

10.63-10.65 OUTCROP IN BED OF CANAL Wissahickon gray schist, schistocity N10°E, dip 55°W, with joints at N10°E, vertical; E-W, dip 20°S.; N45°E, dip 30°SE; and N80°W, vertical is visible in the canal prism during low water.

10.76 SITE OF OLD OVERFALL In the early days of the canal an overfall drained south along the narrow, shallow revine across the Carderock Recreation Area.

10.98 OUTCROP ON BERM Wissahickon gray schist with small rounded quartz pods up to 2-inch size forms low
ledges. It is tightly folded with schistocity striking N12°E and dipping 57° to 70°W; joints are N20°E, dip 42°E; N25°W, dip 20°NE; N75°W, vertical (forms face of canal cut).

4 ft. of dark gray to black silty clay over granular yellow to brown and red clay silt lies above the rock.

HIGHWALLS This section of canal is known as The Highwalls because of the high revetments needed to retain the towing path where the river cut into high rocky ledges. A night watch was kept on the Highwalls in the early 1830's because security of the revetment was questionable. Similar highwalls are from mile 12.40 to 12.50. Curved mullite dry well; 10-30 ft. high; mainly schists, granites - some mafic gneiss; thin till, thinning.

11.04 **OUTCROP** Wissahickon mica schist is exposed in prominent cliffs along the east bank of the river channel east of Vaso Island. Cleavage is N5°W, dip 55° to 70°W; prominent joints form cliff faces parallel to the channel.
11.22 OUTCROP ON BERM A ledge of Wissahickon mica schist with cleavage N5°E to N15°E, dip 65°W is on the berm. Prominent joints are N70°W, dip 80°S; N15°E, dip 18°E, N70°W, dip 45°N; N5°W, vertical; N77°E, dip 55°N and N75°W, dip 45°S. Canal straight for 200 ft. across outcrop and then curves near to south end of outcrop, then runs near 371.00 ft. Straight steady to long curve to north.

11.36 OUTCROP ON RIVER SIDE OF TOWING PATH
Wissahickon mica schist with a vein of milky quartz 100 ft. wide forms a broad low ledge. The vein trends N15°E and the quartz contains inclusions of mica schist engulfed at the time the quartz intruded the schist. Some of quartz is pink in color. Cleavage in the schist trends N40°E and dips 57°W. Joints are N20°E, dip 47°ESE; and N70°W, vertical. A broad, flat bench cut into the rock south of the outcrop, is covered with river terrace gravel containing numerous well rounded cobbles and boulders of sandstone 371.30 ft. hedge on canal-Merseduct Furn. 71 (200 ft. west of hedge)
Along road to 371.30 canal widening over fern from width 10 ft.
and quartzite. The bench is 50 ft. above present river level.

11.18 SITE OF CULVERT ??

11.58 Northwtric ford, Marsden Road

11.63 BOULDER ON SIDE OF TOWING PATH The boulder is schistose gneiss (Wissahickon Boulder Gneiss) in which blocky, black hornblende is dominant; coarse-grained quartz and feldspar are also present. The rock is banded and contains fine-grained black schist lenses up to 3/4-inch thick. The outlines of angular "boulders" inclusions, up to 6 inches long and 3/4-inch thick on a side are accentuated by their light gray weathered surfaces. Quartz veins up to 2 inches wide cut the gneiss.

371.4 Low ledges of gneiss crops are on the berm with schistocity striking N20°E, dipping 66°NW. Prominent joints strike N60°W, vertical; N80°E, dip 55°S; N30°W, dip 65°SW, and N50°W, dip 45°N. Low ledge oncrop 50 ft. wide on top. Outcrop trending westward by low ground 100 ft. wide. Outcrop also along.

(75)
SITE OF POTOMAC GRANITE MILL A stone mill and wharf were on the berm in early 1900's. The mill was a large 2 story timber building. Granite was quarried in Wissahickon Boulder Gneiss on the berm west of the mill.

The towing path is cut in the mica schist phase of the Wissahickon Boulder Gneiss; cleavage and schistocity strike N10°E, dip 85°W; joints strike N80°W, dip 55°SW; and N50°E, vertical. The berm bank is cut along a joint plane trending N80°W.

CULVERT 17 Constructed 1828-30. The circular arch of cut, green-gray granite gneiss has a span and a rise of \(\frac{8}{6} \) ft. of 16 ft.; 14 ringstones and keystone are in the face of the arch. The parapet is 1 ft. high and the springing line is at the foot of the abutment. The spandrels, parapet and coping are coursed schist rubble.

OUTCROP 20 FT. SOUTH OF TOWING PATH

(76)
Wissahickon quartzitic schist with schistocity striking N10°E and vertical forms a low ledge. Similar rock crops out 100 ft. west, 40 ft. south of towing path. MP 12: 371.78 Entry on berm to basin which continues to 371.85; curve around 2 poles 12.36 Culvert 18 3 ½ ft. span (by Amos?)
12.38 (12.42) **CULVERT 18** Constructed 1830. This culvert was blocked off in the 1900's and is now faced by a stone wall on the towing path side and concrete on the berm. 372.05

12.40-12.60 (12.40-12.60) **HIGHWALL SECTION** The canal was rebuilt and widened in this section in 1839 by blasting out spurs of rock that protruded into the prism. Originally the canal alignment here was sinuous because of the spurs.

12.40 (12.44) **OUTCROP ON BERM** Wissahickon quartzitic schist forms a ledge on the berm; vertical joints trending N-S cut the schist.

372.10 Entry to 1972 bridge in Englehard embankment

12.46 (12.52) **OUTCROP ON TOWING PATH** Wissahickon quartzitic schist cut by quartz veins ½ to 3/4 inch wide crops out in an anticline. Schistocity is N-S, dip 45°E and 30°W.
The outcrop is in a bluff on the river side of the towing path and is flanked by high revetment walls of coursed schist rubble on the side of the towing path.

\[12.5\ (\text{Berm}) - \text{culvert, apparently same as Culvert 18.}\]

\[12.55\ (12.62)\ \text{OUTCROP ON BERM}\] An anticline in well-bedded Wissahickon quartzitic schist and quartzite cut by granodiorite dikes forms a low ledge on the berm. Schist and quartzite beds are 2 inches to a foot thick with schistocytic parallel to the bedding. The schist is crenulated and fractured.

\[12.60\ (12.68)\ \text{OUTCROP ON BERM}\] An anticline in Wissahickon quartzitic schist and quartzite is on the berm at the east end of Widewater. West of here the canaloupplies an old high river channel on the north side of Bear Island for

12.61 - outflow, beginning of Widewater 372.38
3,000 yards. The old river channel is blocked off by high
walls at the east and northwest ends of island. Water in
the canal is up to 65 ft. deep in Widewater. The area
north of Widewater and extending along the canal as far
as Cool Spring (15.25) above Great Falls has numerous
quartz veins cutting the Wissahickon schist and gneiss.
Gold is present in some of the veins and was formerly
mined. Maryland Mine, at the junction of Falls Road and
MacArthur Blvd., was operated intermittently from 1867 to
1940 (Reed and Reed 1969; Ingalls 1960) but is now in ruins.
Two other mines were also operated in the area. Most
quartz veins are low grade or barren of ore but some of the
veins contain occasional pockets rich in coarse sheet and
wire gold. The yield from all the mines was small and
totalled about 5,000 ounces. The Wissahickon Formation is
extensively exposed along towing path at Widewater. It is
primarily a micaschist with quartzite and granitized schist
Lens shaped bodies of amphibolite are extensive in schist.

An excellent display of the complex relations of metamorphic rocks are along the trails to the south on Bear Island (Cloos and Anderson 1950; Fisher, 1971). Caution—the side trails are rugged and care should be exercised on the smooth, bare rock surface.

12.80 (12.89) WASTE WEIR This is the site of a former large overfall spillway. A concrete comb and apron 20 ft. wide, 200 ft. long is now buried 15 ft. beneath the towing path. The weir formerly had insert board waste on Machell rapids.

12.90 (13.00) CONCRETE BRIDGE The present steel I-beam 500 ft. long. Structure 100 ft. long.
bridge was built in 1939 and replaced an older timber structure. The bridge carries the towing path across a channel leading to a waste weir. The abutments are coursed schist rubble capped by dressed, coarse-grained granite on concrete slabs. Waste weir is 150 ft from towing path.

gneiss with mica in bands 1/8 to 1/4 inch apart. Ledges in the vicinity of the bridge contain highly distorted schist with closely-spaced veins of feldspar and quartzose material. Highly well-flaking abutment is coursed micaschist.

Small amphibolite lenticular masses extend south of the waste weir. Schistosity is vertical and at right angle to towing path to 80°W.

12.94 (13.04) OUTCROP ON TOWING PATH Granitized, tightly folded interbedded, thin-bedded quartzite and quartzitic schist, Wissahickon Formation, forms ledges along the towing path. It is cut by small quartz veins. Schistosity strikes N15°E, dips 50°E; joints strike N20°E, dip 40°ESE; N50°W, dip 50°NE; N5°E, vertical.

13.00-13.05 (13.10-13.15) OUTCROP ON TOWING PATH Wissa-
hickon muscovite-biotite schist with interlayer quartzite
in beds from an inch to tens of feet thick are in ledges along the towing path. Small masses of foliated amphibolite are included in the Schist. A flat joint surface sloping 10° to the ENE is along the towing path; other joints strike N60°W and dip 60°NNE.Extensive outcrops in low ledges along the berm side of Widewater, continuing west to Lock 15 are formed of Wissahickon muscovite-biotite schist. Joints strike N60°W, dip 70°WNW; N10°W, dip 50°W; and N50°W, dip 30°SW.

Wissahickon granitized mica schist, medium grained and highly foliated crop out in low ledges. The schist is composed mainly of muscovite, biotite, quartz and feldspar and is cut by veins and thin seams of light colored quartz and feldspar along the foliation. Prominent horizontal fractures are in the schist along the towing path at (13.25).

Schistocity strikes N20°E, dips 60°Se; joints strike N-S,
dip 60°E, and N70°E, vertical. Granite dikes up to 6 inches wide intrude the schist at (13.30). They are light colored, fine grained and contain mainly quartz, feldspar, and some muscovite (mica).

13.28 (13.38) OUTCROP ON TOWING PATH Low ledges of metagraywacke crop out at the southeast end of the causeway. The metagraywacke is black, banded and highly micaceous.

Cleavage and schistocity strike N40°E, dip 60°SE; joints strike N80°W, vertical; N80°W, dip 60°N; and N40°W, dip 70°Sw; additional joints at the southeast end of the outcrop strike N50°E, dip 32°SE; N20°E, dip 57°SE; and N10°W, dip 35°W.

13.38 (13.48) CAUSEWAY AND GUARDWALL These structures were constructed about 1850 as part of a large scale improvement program. The towing path crosses a former river channel on a rock causeway; the water in the canal is
25 feet deep at this point. 100 feet southwest of the towing path is a stone guard wall, 15 ft. high, 100 ft. long that blocks off an old channel and protects the canal from flood water. It is built of metagraywacke and schist blocks.

13.40 (13.50) OUTCROP ON TOWING PATH
Ledges 250 ft. south of Lock 15 are formed of metagraywacke with quartzite and schist (Wissahickon Formation). Schistocity strikes N15°E; dips 85°SE to vertical. Crenulated quartz veins cut the schist. Joints strike N30°E, dip 25°SE; N60°W, dip 45°NE; N75°W, dip 60°N; N30°W, dip 75°NE; N80°W, vertical; and N65°W, dip 54°N.

13.45 (13.55) LOCK 15
Lift 8 ft., constructed 1829-31.

The locks are built of Seneca red sandstone with some concrete in upper recess. The upper recess, berm side has a subrecess with a culvert opening 4 fr. wide, 6 ft. high. Corrugated downstream, lock 15- partial. Beyond lock 15 canal excavated in rock cut.
that formerly conveyed water to the chambers. A timber crib dam and concrete spillway, on berm at lower end of lock is 70 ft. long, 15 ft. high and forms a pool on the berm side of the lock. The lockhouse was opposite the center of lock along the towing path. It was constructed of rubble schist in 1830-31 and was demolished in the flood of 1889. A frame lockhouse was built in 1899 just west of the lock. It burned in the early 1900's and only the base of brick chimney remains. The rock channel of the canal was blasted out of Wissahickon metagraywacke and schist between Locks 15 and 16. A masonry wall retains the towing path for 200 ft. upstream of Lock 15.

13.46 (13.56) OUTCROP ON TOWING PATH Wissahickon
Wall along green on towing side, 150 pass west of Lock 15, dense gray Wissahickon metagraywacke, quartztic schist forms low ledges, joints strike N80°E, vertical; N35°W, dip 45°NE; and N60°E, dip 85°SE.

13.60 (13.68) OUTCROP ON TOWING PATH 100 ft. south of Lock 16, dense gray Wissahickon metagraywacke with biotite
and quartz grains up to 1/16 inch size forms low ledges.

Small quartz grains cut the graywacke. Prominent joints
strike N-S, dip 82°W; and N80°W, dip 70°N.

13.62 (13.69) **LOCK 16** 8 ft. lift, constructed 1829-31.

The lock is built of cut Seneca red sandstone. The upper
floor and recesses were cut on top path to form side. Concrete cap placed on
recess contains subrecesses and culverts connecting with
the chamber. A log crib dam with a concrete spillway at
the lower end of the lock forms a pool on the berm. The
lock gates were destroyed June 27, 1863 in a Confederate
raid led by Col. J.E.B. Stuart. Lockhouse no. 10, built
about 1837 is on the berm and is a whitewashed masonry
spillway 15 ft. + 5 ft. miter + 25 ft. Wall 200 ft. south of lock 16 on top path and
structure composed of coursed schist rubble.

13.77, (13.82) **STOP GATE AND GUARD WALL** These structures
were built in 1852 to block flood waters from the Widewater
section of the canal. The abutments of the gate are hammer-
dressed metagraywacke, schist, and Seneca red sandstone.

The concrete wall on the berm, 20 ft. long, fills a former
breach in a masonry wall that connects with a rock ledge.

The area over the canal prism was formerly spanned by a machinery house which was destroyed in the flood of 1889.

A single heavy timber which spanned the canal after 1889 was used to raise and lower stop planks that fitted into notches in abutments. The guard bank on the river side of towing path is 15 ft. high and extends west 500 ft. It is faced with metagraywacke and schist rubble. The trail on Bear Island rejoins the towing path 100 ft. north of stop gate.

Railroad rails on towing path side of canal between blow-off culvert and stop gate.

HIGHWALL ALONG TOWING PATH Above the stop gate the canal is constructed along the edge of a high river channel with the towing path on a dry masonry wall embankment. Wissahickon metagraywacke cropping out on the berm has vertical cleavage trending N10°E and prominent joints at right angles to the cleavage, dipping 60°N.
13.95-13.97 (13.98-14.00) OUTCROP ON BERM A cliff on the 376.45
berm is formed of Wissahickon metagraywacke and schist.

13.97 (14.00) LOCK 17 8 ft. lift, constructed 1829-30.
The facing of the lock is hammer-dressed Seneca red sand-
stone with a backing of granite rubble. The graded flume,
70 ft. from lock on berm, has a stone over fall at its head. The lockhouse, built in 1898, was a frame structure on the berm. It was destroyed in early 1900's. A lock shanty was on the lower berm about 1910.

14.02 (14.05) PATH ON RIVER SIDE OF TOWING PATH This path leads to Great Falls and is a self-guiding geologic tour with descriptive plaques (Reed
Natural Basin between Rocks 17-18.

The lock is faced with hammer-dressed Seneca red sandstone wall on uphill, schist and metagraywacke for 100 ft. below lock.
with a backing of granite rubble; some gray limestone blocks and bricks were used in repairs. A culvert under the tow-
ing path, 15 ft. downstream from lock, was used as a feeder from 1831 to 1837. Water was conveyed from the river channel adjacent to the canal across which a low diversion dam was constructed 100 ft. north of lock. The feeder ditch was along side the towing path. The culvert arch has a span of 6 ft. and a rise of 3 ft., with 12 ringstones and keystone in the face of the arch. The water level of the canal covers a culvert to top of arch. This feeder was abandoned in 1837 after a freshet damaged the small diversion dam. Ruins of lockhouse no. 11 are on berm. It was constructed in 1830-31 of coursed schist rubble and burnt in 1930. The graded flume on the berm is in front of 10 ft. from the lock. Concrete fish sluices in the river channel between Locks 18 and 19 were constructed between and but the plan to provide for a complete system of fish ladders was not finished.

The facing of the lock is hammer-dressed Seneca red sandstone with granite rubble backing; limestone blocks and bricks were used in repairs. Smooth grooves, up to 3 inches deep, cut into the sandstone by towing ropes are on the southwest wing of the lock. A graded flume, 30 ft. from lock on berm, has a 3 ft. masonry and concrete overfall at the lower end. A lock shanty was formerly at the upper recess on the berm. At the south end of the lock on the berm, there are low ledges of Wissahickon metagraywacke and schist; similar ledges are in the river channel adjacent to the towing path.

14.26 (14.30) LOCK 20 GREAT FALLS Lift 8 ft., constructed 1829-30. The facing is hammer-dressed Seneca red sandstone into which prominent rope grooves have been cut at the lower end of lock. A pivot bridge formerly crossed the lock. It was destroyed in the Civil War, but was rebuilt and used until 1924. The flume is in a culvert on 376.80

Advice gate - upper gate, 107 ft. through gate 2 ft. x 2 ft. Lower end recede on dam side, crank shaft for stem gate opening to reservoir, culvert.
the berm 15 ft. from lock and is controlled by a concrete
frame weir with a screw gate at the head of the culvert.
The tavern on the berm side, formerly the Crommelin House,
was built between 1828 and 1830 as lockhouse no. 12 to
serve locks 19 and 20. It was enlarged in 1830 and
established as a tavern in June 1831. Two-story brick
wings were added in 1831-32. In later years it served as
a feed store and as a private club from 1913 to 1925. It
was rebuilt in 1938 and opened as a museum on July 12, 1951.
A large bench of cut, Seneca red sandstone is between the
lock and museum. Northeast of the museum the Washington
Aqueduct building is constructed of Seneca red sandstone.
Other outbuildings near the museum were former shops and
warehouses of the canal company.

14.27 (14.31) OVERFALL AND WASTE WEIR 50 ft. north of
Overfall begins at high tide Feb 10, 60 ft. long. The wall runs from lock
with an overfall 100 ft. long with a revetment of
metagraywacke, built in 1830. A concrete frame waste weir,
The Great Falls Dam of Washington Aqueduct extends diagonally across river at this point and diverts water for the supply of the District of Columbia and parts of Virginia. The first dam, a short, riprap wing dam, was constructed in 1853. It was enlarged and extended across the Maryland channel to Conns Island in 1864-67. A masonry dam, 7½ ft. high and extending 2,800 ft. across the river to Virginia was built in 1884-1886. In 1896 it was raised to a height of 10 ft. The dam is cut Seneca gray sandstone capped by granite from Petersburg, Va.

A pile of cut granite blocks on the river side of the towing path are extra stone from construction of Great Falls Dam. The granite is gray with an orange-tinted, glassy feldspar; fine grained black mica is prominent. One large slab of Seneca red sandstone is
also in the pile.

MPIS: 377.54

15.22 (15.25) **CULVERT 21 COOL SPRING BRANCH** Constructed 377.76

1830. The circular arch has an 8 ft. span and a rise of 4 ft. The face of the arch is cut Seneca red sandstone. The spandrels and parapet are coursed Wissahickon metagraywacke and schist. The culvert is filled to the top of the arch (1971). Leaves awaght.

15.33-15.42 (15.36-15.45) **OUTCROP ON BERM** Wissahickon metagraywacke and schist form low ledges on the berm.

15.74 (15.76) **REVETMENT** A low wall of schist rubble is along towing path. It is the probable site of an old overfall.

15.86 (15.86) **CULVERT 22** Constructed 1829-31. The face 378.39/378.70 (mileage adjusted) of the semicircular arch is cut Seneca red sandstone. The arch has an 8 ft. span and a 4 ft. rise, with 16 ringstones and a keystone. The parapet and coping are mainly coursed,
schist rubble. The culvert is partially filled, only 12 ringstones show (1971). Wings straight.

15.95 (15.95) **OUTCROP ON BERM** Low ledges and rounded spurs of Wissahickon schist are on the berm.

15.98 (15.98) **PUMP STATION** On the river side of the tow-

ing path is a small building faced with quartzitic schist that houses the pumps for the Rockville water supply.

16.20 (16.20) **OUTCROP ON BERM** Low ledges of Wissahickon quartzitic schist line the berm. Schistocity strikes N25°E, dips 70°ESE; fractures are at right angles to the schisto-

city.

16.30 (16.30) **30-FT. CLIFF ON BERM** Wissahickon metagray-

wacke is exposed with schistocity striking N5°E, dipping 60°E.

16.49-16.62 (16.42-16.62) **OUTCROP ON BERM** Wissahickon
metagraywacke with schistocity striking N50E, dipping 75°E, crops out in a ledge 40 ft. high. Prominent joints strike N55°W, dip 75°SW. The outcrop continues intermittently to Swains Lock.

16.62 (16.62) **LOCK 21, SWAINS (OAK SPRING) LOCK** 8 ft. lift, constructed 1829-31. The lock is built of hammer-dressed, Seneca red sandstone. It collapsed and was re-built in 1861. Lockhouse no. 13, on berm, built 1832, is coursed rubble schist and metagraywacke, whitewashed. The lock flume is in a concrete culvert between the lock and the lockhouse with a concrete-framed, board insert gate at its pile of cobbles 50 ft. downstream: cut fender? - direction for flume, not a fender. The head. Culvert 23 formerly carried a stream under the canal just above the lock but was washed out in 1831. A concrete frame, single gate waste weir with insert boards is now at the site of the culvert.

16.74 (16.74) **OVERFALL (MULE DRINK)** A rubble covered
spillway, 18 ft. long, with schist and gneiss blocks, some red sandstone, is 600 ft. upstream from Swains Lock.

16.77 (16.77) OUTCROP ON BERM Garnet-staurolite-mica schist form low spurs along the berm bank.

16.91 (16.91) OUTCROP ON BERM A low ledge contains garnet-staurolite-mica schist which strikes N5°E, dips 40°E.

The outcrop continues as low ledges and spurs for 0.1 mile.

17.00 (17.00) MILEPOST The milestone is coarse grained Aquia sandstone, now deeply weathered. Only stub shows, ½ ft. downstream of new M.P.

17.36-17.54 (17.36-17.54) FILTRATION PLANT The water intake and filtration plant of the Washington Suburban Sanitation Commission is on the berm. The buildings are faced with quartzitic schist. The plant is the main source of water for the Maryland suburbs of Washington.

17.64 (17.64) PIPELINE CROSSING Three 42-inch lines of
the Transcontinental Gas Pipeline Co., bringing gas from
Louisiana via Alabama, the Carolinas and Virginia (Char-
lottesville) cross the canal. Clearings along the pipeline
show the high flood plain, 100 yards wide and 20 ft. above
river, on north; to south in river, Watkins Island, with
a rock cove covered by silt and sand rises 20 to 25 ft.
above the river.

17.78 (17.78) PIPELINE CROSSING of the Atlantic Seaboard
Gas Pipeline, Columbia Gas System cross under the canal.
Two 26-inch lines from Southwest Virginia and Kentucky via
Harrisonburg, Virginia.

17.80 (17.80) CULVERT 25 WATT'S BRANCH Constructed 1830.
The semicircular arch, has a span of 20 ft., with a 10 ft.
rise. 28 ringstones and a keystone are in the face of the
arch. The face stones of the arch and coping are cut
Seneca gray, fine-grained sandstone. The parapet is 3 ft.
high. The spandrels and parapet are coursed Seneca red sandstone and schist rubble.

17.80-17.93 (17.80-17.93) **BOTTOM LANDS** Alluvial flats are on the berm along a meander in Watts Branch.

Berm on embankment to 386.75

MP 18 386.90

17.93-18.10 (17.93-18.10) **OUTCROPS ON BERM** Wissahickon chlorite-biotite-muscovite schist with schistocity striking N30°E, dipping 20° to 30°SE, form low spurs.

18.10 (18.10) **OUTCROP ON BERM** Wissahickon chlorite-biotite-muscovite schist crops out in a ledge 100 ft. high. A cave opening is at the east end of the outcrop.

18.16 (18.16) **OUTCROP ON BERM** Wissahickon chlorite-biotite-muscovite schist with schistocity striking N30°E, dipping 36°SE, forms a cliff 100 ft. high.

18.21 (18.21) **SEWER VENT ON BERM** This structure is faced with quartzitic schist. It is a part of the Dulles inter-
18.30 (18.30) OUTCROP ON BERM Wissahickon quartz-biotite schist with beds of fine grained metagraywacke crops out in a low ledge. Schistocity strikes N30°E, dips 37°SE., forms prominent ledge.

18.41 (18.41) SEWER VENT ON BERM The vent is faced with gray quartzitic schist.

18.51 (18.51) OUTCROP ON BERM Wissahickon quartz-biotite schist with knots of chlorite-muscovite forms a ledge. Schistocity strikes N20°E, dips 45°ESE; similar outcrops in low ledges continue to (18.70).

18.58 (18.58) SEWER VENT ON BERM The vent is faced with gray quartzitic schist.

18.72 (18.72) PUMPING STATION ON BERM The Dulles Interceptor sewer crosses the river from Virginia at this point. The pumping station is faced with gray quartzitic schist.
18.88-18.97 (18.88-18.97) OUTCROPS ON BERM Low ledges bounded by a prominent bluff 70 ft. high at west end and a cliff 25 ft. high at east end are formed of Wissahickon metagraywacke, phyllite, and mica schist. Large clusters (porphyroblasts) of biotite are in the schist. Schistocity strikes N 10°E, and dips 40°E at east end, 20°E at west end; prominent joints strike N40°W, dip 82°NE, N70°W, dip 87°SW to vertical. The latter set of joints form a prominent face rising 25 ft. above the canal at east end of outcrop. Wall on river side of round; sides cut.

MP 19 381.95

19.10 (1910) OUTCROP ON BERM Low ledges of Wissahickon metagraywacke, phyllite, and mica schist crop out on the berm.

19.36 (19.36) SEWER VENT ON BERM The vent is faced with gray quartzitic schist.

... of the west end of the outcrop are formed of Wissahickon metagraywacke and quartz-mica schist. Schistocity strikes N-S, dips 42° E; joints at the east end of the outcrop strike N15° W, dip 80° W; at the west end the joints strike N65° W, dip vertical; N80° W, dip 68° SSW, N-S, dip 60° W. 30 ft. high; thick beds.

19.61 LOCK 22 PENNYFIELD LOCK 7 ft. lift,

constructed 1829-31. The facing is cut Seneca red sandstone 10 ft. wide; 3 x 5 ft., with bonds at third of upper end; gate on apron of high stone with a concrete coping on the east end. A red sandstone and metagraywacke rubble revetment is on the east of the lock. Lockhouse no. 14, constructed in 1832, is on the towing path side of the lock. It is built of coursed gray schist, quartzite, and fine-grained, dark gray to black metagraywacke rubble, white washed. It was seriously damaged by fire in 1935. A graded flume is on the berm, 4 ft. deep x 8 ft. wide; avg well of 24 ft. water. 40 ft. from lock, with a 2-gate, concrete frame weir at the...
head of the flume. A waste weir is 100 ft. west of the
lock. It is a concrete frame with 3 drop board gates, 2
of which have paddle gates at the base. A large block of
gray Wissahickon quartz-mica schist with quartz veinlets is
on the northwest side of the lockhouse; quartz layers 1/8
to ½ inch thick and dense, thin layers of mica are prominent.

The rock has a greenish gray sheen on the surface and is
similar to boulders on the berm above the lock. A flood
plain 20-25 ft. above river extends along the Potomac west
of the lock. Brown, clayey silt forms the flood plain and
10 ft. of the silt is exposed in the creek bed at the lock.

19.95 382.88 CULVERT 30 MUDDY BRANCH Constructed 1830.
Rebuilt

The coping and semicircular arch are cut Seneca red sand-
stone. The span of the arch is 16 ft. with an 8 ft. rise.

26 ringstones and a keystone are in the face of the arch.

The springing line is at water level. The parapet and coping
are 5 ft. high. The spandrels, wings, and parapet are
guessed black. Entablature 11 ft. above coping
coursed dark gray, fine grained metagraywacke. Extensive
breaches occurred in 1830 and 1831 in the culvert. The
upstream side of the culvert was badly damaged from a
breach in 1835. The site of John L. DuFief's wharf is
just east of the culvert basin.

MP10 - 381.95
20.00 EAST END OF DIERSONS WILDLIFE MANAGEMENT

AREA. This wildlife area is one of several along the
canal maintained by the Maryland Game and Inland Fisheries
Department. 383.00 - 383.12 ft. pipeline for water pumped from river
wildlife area.
383.40 - End embankment on berm.
20.75 383.70 PIPELINE CROSSING A gas transmission
line of the Colonial Pipeline Co. crosses beneath the

canal and follows the west bank of Lick Run.
36" 32" line, installed 1963. Extend from July & eastern extremity 5700 mi.
Runaway, Va. to Gaithersburg, Md.
383.80 - Begin tarps on wall
ft. high on berm, are formed of gray-green Wissahickon
chlorite-sericite schist. Schistocity strikes N 5° W, dips

(104)
Opposite Milepost 21 a 50-ft. ledge on the berm contains highly fractured schist with schistosity striking N5°W, and dipping 15°E and cut by joints striking N45°E, vertical; N15°E, vertical. A flat swampy area (21.00-21.14) lies in front of the ledges. West of the swampy area (21.14) are low ledges of gray Wissahickon schist with prominent fractures. Marks of drill holes, 5 ft. apart were made in 1830 in the face of the ledges. At the west end of Blockhouse Point a narrow ledge of Wissahickon fine-grained schist extends upwards 150 feet. The schist contains sheared and slickensided quartz veins. Ledges of schist are in the river at the west end of Blockhouse Point. The wall along the river side of the towing path is gray schist rubble.

Sketch of Blockhouse Point
Drawing 4"h x 8"w for reduction to 2" x 4"

OUTCROP ON BERM Wissahickon quartz-mica
schist and phyllite forms a 15-ft. ledge. Schistocity
strikes N5°E, dips 10°E.

21.31 384.28 OUTCROP ON BERM Gray Wissahickon quartz
mica schist and phyllite with prominent fractures is
exposed in a 25 ft. ledge. Schistocity strikes N15°E,
dips 28°E. A revetment wall, 10-15 ft. high on the river
side of towing path is constructed mainly of schist rubble.

21.38 384.35 OUTCROP ON BERM A bluff 150 ft. high,
behind low ledges, is formed of deeply weathered and
fractured Wissahickon chlorite-sericite phyllite and mica
schist. Steep N10°E, 30°ESE dip, drill marks 2 in. in diam.

21.40 384.36 SEWER VENT AND PUMP ON BERM The structure
for schist ledge below wall of canal, strike N20°E x 18°ESE dip.
is faced with gray quartzitic schist. An outcrop of deep-
ly weathered Wissahickon quartz mica schist and chlorite-
sericite phyllite, is in a ledge on the berm. Wells at 384.40

22.00 384.90 MILEPOST This is one of the original mile-
posts. It is located 10 ft. from the river side of the
towing path and is made of cut, coarse-grained Aquia sand-
stone.

22.06 CULVERT33 This culvert was constructed
in 1830 and had a 6 ft. span. After the culvert was washed
out in September 1868 it was not rebuilt and the stream
was diverted into the canal.

22.09 385.66 LOCK23 VIOLETS LOCK 8½ ft. lift, construct-
ed 1829-31. The face of the lock is mainly cut Seneca red
sandstone with some concrete in the chamber on the south
side at the lower end of lock. The upper recess walls of
red sandstone and limestone are 3 tiers higher than the
rest of the lock. The coping is limestone. The breast wall
is at the lower end of the upper recess. Timber and concrete
are in the floor in the upper recess. A mason's mark
is in the center of the north wall of the chamber, 4 tiers
above facing in area of upper recess mike sill. Intg gan to mchgr. culvert
on trpsh. pulee. gth; mne on trpsh. side. Breast sffldg. Mth
on upper end of lock on trpsh. side.
from the top. A raid on June 27, 1863 by Col. J.E.B. Stuart wrecked the lock gates. The lock was seriously damaged in the flood of 1877. A pivot bridge was built over the lock in 1836.

The Guard (Inlet) lock and feeder are faced with hammer-dressed Seneca red sandstone. Some schist is in the abutments of the old towing path bridge at east end of the lock on top of the coping. A few blocks of gray Seneca sandstone and trimmed metagraywacke are in the walls of the lock. The coping is hammer-dressed red sandstone. The original cost of the guard (inlet) lock was $7,296 and the feeder was $1,916. Lockhouse no. 15, constructed 1831-32, was a frame building formerly located on the berm. It burnt in the 1930's. The canal was opened from Little Falls (Lock 5) to Violets Lock on November 13, 1830. Rushville community, just north of Lock 23 prospered in the early days of the canal. It was named for Richard
Rush of Pennsylvania, Secretary of the Treasury of the United States 1824-28 who aided in obtaining foreign financing for C & O Canal project in the early 1830's.

DAM NO. 2 SENECA DAM 2,500 ft. long, constructed 1829-31. This was originally an arch stone dam founded on bedrock. It was 4 ft. high, backing a pool 4 to 5 miles long. The original cost of dam was $28,793. The dam was breached many times and was filled with stone, gravel, and brush. It was rebuilt extensively in 1867 but much of the dam was carried away by ice in 1868 and in 1873. It was rebuilt in 1877. At present it is little more than gentle rapids with weeds covering part of it.

OLD CHIMNEY On the river side of the towing path in picnic grounds is a chimney constructed of rounded river cobbles, primarily sandstone, and some red sandstone. A broad, high flood plain is on the berm.
between Violets Lock and Seneca. It is 20 ft. above the river grading northwards into a low terrace, 60 ft. above the river.

Boat train and stone locks 0.4 mile to each. Basin 386.10 ft 386.68 ft 22.76 ft. LOCK 24 RILEYS LOCK 8½ ft. lift, constructed 1830-31 as an integral part of Aqueduct 1. The lock is faced with cut Seneca red sandstone. The upper recess connects with the trunk of the Seneca Aqueduct. Mason's marks are prominent on the berm side of chamber TX + .

Lockhouse no. 10, on berm, was constructed 1829-30. It is built of cut and coursed rubble Seneca red sandstone, 1½ stories high. Site, surveys Derby Hill on berm west lock.

Lock 23 - Lock 24 - berm on low embankment.

22.80 385.70 AQUEDUCT NO 1 SENECA AQUEDUCT Constructed 1828-32. The face of the Aqueduct is cut Seneca red sandstone. The aqueduct is 113 ft. long between abutments and has 3 segmental arches, each with 33 ft. span and 7½ ft. rise. 28 ringstones and keystone are in each arch, with
the springing line at the level of the creek. The piers 385.82
are 7 ft. thick. The coping and parapet are 7 ft. high
with the coping 18 ft. above the level of the creek. The
canal trunk is 15 ft. wide. Simple rectangular pilasters
are on the towing path side of the piers and abutments.
Remnants of the railing on the wings has 2 heights of
iron balusters. Seneca red sandstone end posts are at end
of wings.

Diagram- railing and corner post
Draft 4"h x 8"w; reduce for publication to 2"h x 8"w

Mason's marks are on the berm side at the west end of
the trunk F and on the berm side at the east end of the trunk X. In a raid by Col. J.E.
B. Stuart, June 27, 1863, a boat was burnt in the aqueduct.
A timber trunk was placed in the aqueduct in 1873, because
the masonry walls were 9 inches out of plumb and the arch
was supported by the inner liner only. Some of the ring-
stones were crushed. The aqueduct was taken down and rebuilt in 1873-74 with iron braces placed to retain the stonework. The west arch fell September 1973, being carried out by water backed-up in a flood of Seneca Creek. The berm parapet and coping remained intact over west arch but were removed when temporary repairs were made. A 3 gate, concrete frame, waste weir is on the berm wing at the west end of the aqueduct.

22.84 (22.84) SENECA QUARRIES A large swampy area west of the aqueduct extending west to 23.13 is a former canal basin. Quarries on the north side of the basin were opened about 1774 and the stone was used in the Potomac Company canal locks on the Virginia side of Great Falls in 1797. Along the canal there are six major quarries- 1)
John P.C. Peter Quarry, at the margin of the canal near the mouth of Seneca Creek adjacent to the stone cutting mill

(112)
This quarry was the source for stone for the Seneca Aqueduct, many locks and culverts on C & O and the Alexandria Canal. 2) Government Quarry on the east side of Bull Run 150 yards upstream from the Potomac, source for most stone used in the Great Falls dam. 3) Peters Quarry on the west side of Bull Run along the canal which was the source for most of the stone in the Smithsonian Building, Washington, D.C., 1848-54. This is the largest quarry in the Seneca area but it is hidden by a dense growth of honeysuckle.

4) Georgetown College Quarry, along the canal ¼ mile west of Bull Run Quarry. 5) Peters Quarry, 1,000 ft. west of Georgetown College Quarry, and 6) Lees Quarry north of Peters northwest quarry (4) (Renwick and Owen 1848). The quarries were active until 1898 with some stone shipped via the canal as late as 1904. The floor of the Government Quarry is covered by large unfinished blocks of sandstone that were abandoned when the Great Falls dam was completed.
using granite instead of sandstone. Walls of red sandstone, ruins of the cutting mill built in 1873 to replace one built in 1850 are at the northeast corner of the basin. Water from the canal supplied power to the mill. The mill tail race is on southeast side of mill. Stone was hauled from the quarries to the mill on a narrow gauge [railroad] powered by mules. The individual quarries were sold to the Potomac Red Sandstone Company in 1867. This company was reorganized in 1872 as the Maryland Freestone Mining and Manufacturing Company. Operation of the Maryland Freestone quarry was suspended in 1874 for 9 years because of litigation with the Canal Company over water power. It was reorganized in 1883 and closed in 1889 because of destruction of canal by flood. In 1891 it was purchased by George Mann of Baltimore and reorganized as the Seneca Stone Company. The Canal Company installed a Blake 15 x 10-inch crusher at the Peters (Bull Run) Quarry in 1874 to
provide crushed stone for the towing path.

The rock at the quarries dips 15° to 20° Sw. Workable beds were from 18 inches to 7 ft. thick; they varied in color from gray to red, texture and hardness and shaly beds were mixed with the sandstone. Two sets of joints, one perpendicular to the dip and normal to the strike, the other vertical and parallel to strike aided in quarrying. The joints were spaced a few inches to several feet. Fine grained sandstone was used most. It was soft, easily cut and carved in quarrying but hardened after exposure. The rock is dominantly quartz with feldspar (microcline and and plagioclase) and muscovite (mica); grains are not interlocked and the cement is ferruginous.

Map showing location of quarries
craft 5"h x 10"w; print 3"h x 4"w.

23.31 38.30 CULVERT 35 BULL RUN Constructed 1829-30, Sink, 12 ft. long narrowing, 8 ft. wide one arch in prism. Rebuilt August, 1863. The coping and arch cut Seneca Graywacke.
red sandstone. The segmental arch has an 8 ft. span and 4 ft. rise. The face contains 18 ringstones and a keystone with the springing line at water level. The parapet and coping are 1½ ft. high. Spandrels and the parapet are coursed Seneca red sandstone rubble. The wall on the berm of the canal extending east to basin, built of coursed red sandstone rubble, supported a race to the stone cutting mill. An old grist mill was on the west side of the culvert on the berm. The Government quarry is on the east side of the stream, 100 yds. north of the canal. Peters Quarry is on the west side adjacent to the canal. Sugarland Flats, a prominent terrace 20 to 60 ft. above the Potomac River is on the Virginia shore to the south.

OUTCROP ON BERM Red arkosic sandstone and shale, New Oxford Formation (Triassic), form ledges on the berm. The sandstone beds are up to 4 ft. thick, shale beds are 4 inches or less thick. Strike of
the beds is N18°E, dip 8°NNW at east, 12°NNW at west.

386.75 - 386.80 Culvert

386.91 - 386.90 CULVERT 37 BEAVERDAM RUN Constructed 1831-32. The segmental arch is cut Seneca red sandstone with a span of 12 ft. and a rise of 6 ft. 10 ringstones and a keystone are in the face of the arch with the springing line at water level. The parapet is 2 ft. high. Span-drels, wings and parapet are coursed Seneca red sandstone rubble, with some dressed blocks. The culvert was badly damaged in the flood of September 15, 1843 and was torn down and rebuilt. It was rebuilt in 1863 again after the berm side of the arch fractured. In September, 1971 a freshet on Bull Run breached the berm side of the culvert. A wooded flat (high flood plain) is on the berm west of the culvert, 10 to 20 ft. below the level of the towing path and 8 to 12 ft. above river level. A stop gate (built 1835) was formerly west of the culvert but there are no remains of it. U.S. quarry on east.

MP24 - 386.98
MP25 - 387.95 24.94 informal conflux 100 ft. long. Ends 33 paces east of mile post, sloped 5°-2°.83 paces into MP. For east, (117) galleys to river; also 20 ft. in 25 ft. stream, rooted.
This is the source of water for spray irrigation used on the open meadow to north. Alluvial soil on the meadow is dark brown, fine sandy silt deposited from high floods of the river.

CULVERT 38 HORSEPEN BRANCH Constructed 1830-32. The coping and arch are cut Seneca red sandstone.

The segmental arch with 12 ft. span and 6 ft. rise has 24 (24 shown) ringstones and a keystone in the face. The springing line is at water level. The parapet and coping are 2 ft. high.

Spandrels, wings and the parapet are coursed Seneca red sandstone rubble. The arch was breached in the west quarter in the center of the canal (1971).

The material in the mound was excavated from the canal and is pebbly to cobbly brown sandy silt with cobbles up to 1 ft. size. The cobbles are subrounded, mainly gray and
white quartzitic sandstone; some pebbles are dark red sandstone. The material is typical of the low river terrace in which the canal is excavated.

MP 28 - 391.18
27.91 - Culvert (Barren) - not seen.

27.55 - 30.09 TERRACE ON BERM A broad, open flat, 18 to 25 ft. above the river is on the berm. Sprinkler irrigation is used in the fields.

28.36/ Red 85. ruins of canal warehouse, barn, manure heap (Wohn) - no fence, dead vegetation

28.45 391.72 CULVERT 39 Constructed 1830-32. The coping and arch are cut Seneca red sandstone with a sugary texture. The semicircular arch, 8 ft. span, 2 ft. rise, has 10 ringstones and a keystone in the face. The parapet and coping are 6 ft. high. Spandrels and the parapet are white quartzitic gneiss with small red garnets. The culvert is silted to the top of the arch (1971).

19.31 CULVERT 41 Constructed 1831. It is filled with sediment to the top of the arch (1971). The parapet, 7 ft. high is Seneca sandstone and quartzitic gneiss.

29.31 19.86 - 392.60 CULVERT 42 CABIN (CHISEL) BRANCH Constructed 1831-32. The semicircular arch is cut Seneca red sandstone with a 12 ft. span and a 6 ft. rise. 18 ringstones

28.80 - 29.31 Canal at Terrace End
Spandrels and the parapet are hammer-dressed red sandstone.

The original culvert with a 6 ft. span was carried away in a freshet August 19, 1843; a timber trunk was placed over the stream and the culvert was rebuilt with a 12 ft. span instead of 6 ft. in 1848-49.

OUTCROP ON BERM Ledges of red sandstone and shale, New Oxford Formation are in an old quarry opening. The sandstone beds are 1 ft. thick in the center of the outcrop, crumbly red shale is on the west with a slight dip to the west. Not visible in summer

OUTCROP ON BERM Low bluff formed of red crumbly sandy shale, New Oxford Formation is on the berm. The dip is slight to the west.

EDWARDS FERRY OUTLET LOCK Constructed 1835-37. The two-chamber lock is 150 ft. south of main
trunk of canal. It is faced with hammer-dressed, gray and red Seneca red sandstone. The stone is mainly from Lees Quarry in fine ground white-gray sandstone at Seneca. The abutment for the towing path bridge at the head of the lock is 11 ft. high. It is cut Seneca red sandstone with 3 tiers of rough-trimmed red sandstone at the top. The span is 36 ft. The original bridge, built 1836; was burnt in July 1864 in a Confederate raid. It was rebuilt several times afterwards. Basin at head of lock 175 ft. long (N-S). Coping on masonry lock: gray ss, cut. Joints of red in hammer dressed smooth rubble in walls. 87

30.78 (30.86) LOCK 25 EDWARDS FERRY 8½ ft. lift, constructed 1828-33. The face is hammer dressed Seneca red sandstone. The subrecesses in the upper recesses are 3 ft. wide x 4½ ft. high and were intakes for the old lock culverts. They are now blocked with rubble. Masons' marks are in the chamber. Coping above the upper recess is concrete. A lower extension to the lock, built in 1880-81, is now a low mound of rubble 130 ft. long below the lock in line with the berm side of the chamber. The towing path
EDWARDS FERRY
OUTLET LOCK
4 July 1975
is raised in the area of the extension. This lock is the Western-most one with the old style breast wall at the lower end of the upper recess. The flume is on the berm.

Concrete box culvert carries road over flume, 6 ft. wide x 6 ft. deep; 8 ft. wide and 30 ft. from lock and is lined with red and gray sandstone. Basin at head of lock 100 ft. long x 60 ft. wide. Timber bridge carries road over lock. The overfall at the lower end formerly had a concrete frame waste gate at the road crossing. Lockhouse no. 17 is on the side of the towing path and is brick with red and white sandstone, crumbly purple sandstone, green shaly sandstone and quartzite in foundation. Foundation for an old warehouse on the berm below the lock, consists of red and gray sandstone rubble. A 2 story brick store is on the towing path at the east end of the lock.

A pivot bridge placed over the lock in 1831 was maintained until 1925. Lock 25 is at the lower end of the 9-mile level.

\[\sqrt{30.84} \] (30.84) **CULVERT 43 AND WASTE WEIR** 100 ft. west of 399.61

Lock 25, culvert constructed 1831-32, original waste weir
The waste weir constructed in 1904, is a concrete frame, 3 gates, 2 of which were formerly paddle gates and 1 gate with insert boards. Wings are coursed rubble of red and gray Seneca sandstone. The culvert is 20 ft. west of upstream side of culvert arch exposed in canal, red Seneca rubble; wing on end along slightly slanty flank, coursed red Seneca rubble wing (straightly) to waste weir and has a circular arch of cut Seneca red sandstone with a 6 ft. span and 3 ft. rise. 12 ringstones and a keystone are in the face of the arch. The abutment is 1 ft. high. The parapet is 1 ft. high. Spandrels, parapet and the wall between the waste weir and the culvert are coursed Seneca red sandstone rubble. Parked with stake grid 35. 10 ft. embankment above coping.

31.22 400:01 BOULDER ON TOWING PATH A rounded, gray, sugary quartzite boulder, 4 ft. in diameter on the towing path is part of a terrace deposit. It was apparently rafted downstream by ice in the Pleistocene.

31.76 400:35 PIPELINE CROSSING One line, a 30-inch gas pipe of the the Atlantic Seaboard Co. from northern West Ford run across plain to river and to south.
Virginia via Winchester passes under the canal and connects with other Atlantic Seaboard lines in Montgomery County to the north of the canal.

CULVERT 44 1/2 BROAD RUN Constructed 1829-32. The culvert was originally 2 stone arches, each 15 ft. from trunk with a 16 ft. span. It was destroyed in a freshet June 29, 1846 and a canal boat was swept through the breach. A timber trunk was completed over breach August 1, 1846 but collapsed in 1847; rebuilt with a permanent trunk in 1847, which gave way October 23, 1851 after a boat hit the wall.

The trunk was replaced and later rebuilt at intervals of 10 to 15 years. The present timber trunk 16 ft. long on abutments of hammer-dressed purple and red Seneca sandstone; some gray sandstone is in the wing walls along the canal trunk. The timber trunk walls are 12 x 12 inch timbers tied with iron rods; triangular brace rods are beneath the frame of trunk. The flooring is 12 x 12-inch
Horizontal limited 25'.
5' 22' 5' 22'
30' living 16' lift

6 feet to help
lumber from lift
20' feet

Lumber mill
Put in with lumber
14' lift con.
Dismantled
20' feet
12' feet

Broad Run Trunk
6 July 1975
timbers. Rounded sandstone and quartzite cobbles up to 3
inch diameter from terrace deposits are in the bed of the
canal at the culvert.

Sketch of trunk; draft 8"h x 10"w, print 3"h x 4"w.

CULVERT 45 ABRAMS (ABRAHAMS) BRANCH

Constructed 1830-32. This culvert had a stone arch with a
6 ft. span. Half of the arch collapsed August 19, 1843
and the culvert was eliminated by filling and drainage was
diverted along the berm. The stream, however, enters canal
now and debris fills the prism to within 2 ft. of the tow-
ning path downstream of the old culvert site.

CULVERT 46 Constructed 1830-32. The coping
and arch are cut Seneca red sandstone. The circular arch,
4 ft. span, 2 ft. rise, has 10 ringstones and a keystone in the face. The parapet is 3 ft. high. Spandrels and the parapet are coursed red sandstone. A 10 ft. embankment is above the coping. Straight wings, westponded to within 1/2 ft. of arch.

32.96 (32.96) PIPELINE X No pipeline.
32.96 Culvert? - Kahn based on MP33. No culvert, area is pipeline site, MP33 402.11

33.18-33.36 402.30-402.50 MEADOW ON SOUTH A high flood plain, 20 ft. above river level, lies south of the canal.
33.50 (33.50) SQUARE DRAIN (CULVERT 46 1/2) Constructed 401.58
1831. A 3 x 3 ft. square opening with a 6 ft. parapet crosses under the canal. It is built of Seneca red sandstone and is one of the few square drains remaining on the canal; it is now filled with trash (1971). No wings.
33.67 Culvert - Kahn

33.75-35.00 HIGH FLOOD PLAIN Harrison Island 402.80
in the Potomac River to south is one of several large is-
lands in this section of the Potomac.

CULVERT 47

Constructed 1831-32. The coping and arch are cut Seneca red sandstone. The circular arch, 6 ft. span, 3 ft. rise, has 12 ringstones and a keystone, each with designs cut into the face. The abutment is 6 ft. high and the parapet and coping are 2 ft. high. Splayed wings are on the towing path side. Spandrels, parapet and wings are coursed Seneca red sandstone rubble. A 6 ft. embankment is above the coping. A hole 25 ft. long, 12 ft. wide and 12 ft. deep is in the canal bed above a breach in the arch. Rubble masonry of the arch is exposed in the breach, and drainage of the canal from the east flows into the breach. Red shale, New Oxford Formation, is exposed at the base of the abutment on the river side of the towing path. It strikes N60°E and dips 10°NW.
CULVERT 47 1/2 Constructed 1831. The circular arch, 4 ft. span, 2 ft. rise, has 4 ringstones.

High furnace, 10 ft. above canal; 40 ft. above river, on brow from Culvert 47, 4 ft. upstream along canal of cut Seneca red sandstone on the south (downstream) side and 12 rubble stones in the rest of the arch. The abutment is 6 ft. high. The parapet, 4 ft. high is coursed red sandstone rubble. The spandrels are red sandstone rubble on the upstream side and on the downstream side (south) they are rubble to 5 ft. above stream level overlain by large, straight rings irregularly cut red sandstone blocks. A 5 ft. embankment is above the coping. The berm side of the culvert has collapsed and the stream enters the canal. Timber footings for the culvert are exposed below the towing path. A 6-inch steel pipe for irrigation water passes through the culvert. MTG 1975 34.4 403.49 South River RR CO.

CULVERT 49 Constructed 1829-31. The coping and arch are cut Seneca red sandstone. The circular arch, span 4 ft., rise 2 ft., has 10 ringstones and a keystone.
The abutment is 5 ft. high and has irregular blocks of red sandstone. The parapet and coping are 3 ft. high. Splay-winged, 12 ft. long on south; east on both the side collapsed our arch and on north side. Spandrels, wing walls and parapet are coursed red sandstone rubble which is partly trimmed in the spandrels. A 10 ft. embankment is above the coping.

- 34.61 403.64 SUMP POOL. There is a large depression, south to north 1-49 ft. down. 58-59 p. Stone embankment on side of towing path, 100 ft. on the river side of canal, scoured out of the flood plain. A stone wall along the towing path and a ravine to the river are probably remnants of an old overfall.

- 34.82 403.84 CULVERT 50°. Constructed 1830-31. This is the most ornate culvert arch on the canal. The arch and coping are cut Seneca red sandstone. The elliptical arch, 12 ft. span, 3 ft. rise, has 12 ringstones and an elaborate keystone. The abutment is 8 ft. high. The parapet and
Sketch of arch
Draft 8"x10" for printing at 3 x 4.

Coping are 3 ft. high and are cut red sandstone. A 10 ft. embankment is above the coping. The south side of the arch is breached in the middle of the canal where there are holes 12 ft. x 10 ft. and 6 ft. deep. A 4 x 4 ft. breach is in the rubble masonry of arch at this point. The coping and arch are cut Seneca red sandstone that has weathered deeply. The arch circular, 4 ft. span, 2 ft. rise, has 10 ringstones and a keystone. The parapet and coping are 2 ft. high. Spandrels and the parapet are coursed red sandstone rubble. Buttresses are on the towing path face of the culvert. They are 5 ft. high and battered 1 on 2. An 8 ft. embankment is above the coping. The culvert was washed out in the summer of 1839 and was

35.05 CULVERT 51 Constructed 1831-32.
rebuilt.

35.42 CULVERT 52 75 ft. south of Whites Ferry Bridge; constructed 1831-32. The coping and arch are cut in Seneca red sandstone. The arch is semicircular with a 10 ft. span and 5 ft. rise. 16 ringstones and a keystone are in the face. The abutment are 2 ft. high. The parapet and coping are also 2 ft. high. Spandrels and the parapet are coursed red sandstone rubble. The entire culvert under the canal prism has collapsed and been removed, only footing stones remain and the arch under the berm and footway? 2 ft. abutment of stone across each side of old tunnel. On the south side of the towpath are on this low abutment. N/S WING

35.55 (35.71) WHITES (CONRADS) FERRY An old iron bridge over canal, 70 ft. span, is a slightly-arched pony (open) Warren truss. The timber deck is 12 ft. above the water level of canal. The abutments are Seneca red sandstone with large, hammer-dressed faces. The original was a Howe structure. phone, light snack, groceries, gas, boat ramp. Ferry service to Virginia
timber truss built 1865-66 and rebuilt 1871. The iron bridge was built 1876. Whites Ferry, formerly Conrads Ferry, has been in operation since early 19th Century and connects with U.S. 15 in Virginia via a county road.

35.60 (35.76) GRANARY The rubble and cobble wall on the berm is the foundation for a canal warehouse and granary. It was built in the 1870's or 1880's and was a 2 story timber building, 23 ft. wide and 70 ft. long parallel to canal.

35.72 (35.95) CULVERT 53 1/2 Constructed 1832. There are two culverts at this point. The south culvert is filled with sediment (1971) and only 6 ringstones and a keystone show. The circular arch, span 6 ft. (\(\pi\)), is cut light gray sandstone of the New Oxford Formation. The parapet and coping are 4 ft. high. The coping is cut gray sandstone. The spandrels and parapet are gray sandstone.
A culvert 20 ft. to the north is a steel pipe with slabs of concrete rubble in wings and spandrels.

35.71 Road culvert 52½' - (lost)
MP 36.00 405.00 5'43.45

35.86 (36.09) CULVERT 53 Constructed 1832. This culvert is filled to the top of the arch with only the keystone showing. (1971). The parapet and coping are ¾ ft. high x 10 ft. long. Spandrels, parapet and coping are coursed red sandstone rubble (New Oxford Formation). The spandrels on the south side of the towing path face have fallen.

36.61 (36.81) CULVERT 54 Constructed 1831-32. This culvert has a circular arch, 6 ft. span, ¾ ft. rise, with 16 ringstones and a keystone. The face stones are cut light gray sandstone, New Oxford Formation. The abutment is 3 1/2 ft. high. [There is an abrupt 3 ft. drop below the pavement level on the river side of the culvert.] Buttes - Rebuilt 1974-75. Straight wings. Buttresses are on the wings of the towing path face of the culvert. Spandrels, parapet and wings are coursed gray.
sandstone rubble. [A breach 15 ft. wide across canal, 20 ft.
long and 8 ft. deep in the center of the canal over the
north side of the culvert and the rubble in arch is exposed]

The barrel of this culvert was damaged extensively by flood
waters from Hurricane Agnes in 1972. Rebuilt

36.61-37.22 (36.81-37.46) TERRACE ON BERM Cobble strewn
Ends 406.35

- flat 5 to 10 ft. above towing path, 35 to 40 ft. above
canal.

river.
MP 37 405.99 544.40

36.98 (37.20) CULVERT 56 Original culvert built 1832-33.
406.18 544.58

The stone culvert was replaced by a ceramic pipe 5 ft.
in 1914.

diameter. The parapet is 5 ft. high and built of concrete.

544.95 low ledge red sandstone on bank, appears dip 5° downstream.
544.95 stream comes into bank and canal, large delta fill in stream.
37.31 (37.55) OUTCROP ON BERM Low, discontinuous ledges
406.72

of New Oxford red sandstone crop out on the berm.

37.48 (37.74) OUTCROP ON BERM Low ledge of New Oxford
red sandstone are on the berm.

545.10 ledge 40 ft. high on berm, red sandstone, ledge 6 in. - 1 ft., appears
dip 15° downstream; outcrop 200 ft. long.
545.18 stream comes into canal on bank, small delta in canal.
37.55 (37.80) OUTCROP ON BERM A ledge 30 ft. high of New Oxford red sandstone, strikes N5°W and dips 15°W.

37.74 (37.98) OUTCROP ON BERM A ledge 50 ft. high, 100 ft. long of gray limestone conglomerate, New Oxford Formation is on the berm. The rock contains subrounded pebbles and cobbles of dense limestone, and quartzite marble, 1/2 to 3 1/2 inches in diameter in a matrix of reddish, coarse grained sandstone. The beds are 1 to 15 feet thick. Red sandstone is at the top of the exposure. Boulders of conglomerate are in bed of canal.

37.92 (38.18) SITE OF OLD QUARRY The hill to east of the canal opposite the Marble Hill Hiker-Biker Overnighter is reputed to be the site of a quarry for "Potomac marble" used in the columns and other parts of the House of Representatives in the U. S. Capitol. The quarry is cited in Geddes and Roberts initial surveys for the canal.
38.17 (38.37) CULVERT 60 Constructed 1832-33. The coping and arch are cut Seneca red sandstone. The circular arch, span 7 ft., rise 3 ft., has 10 ringstones and a keystone. The abutment is 3 ft. high. The parapet and coping are 4 ft. high. The spandrels, parapet, and wing walls are coursed red sandstone rubble, New Oxford Formation. The abutments are faced with concrete throughout the culvert. Stream strongly odiferous. Small delta impures on top of culvert from west in. Bracken grown over arch; wind 20 ft. long x 15 ft. wide.

38.21-38.82 (38.41-38.74) OUTCROP ON BERM A bluff 30 to 100 ft. high is formed of coarse grained red sandstone, New Oxford formation that strikes N 5° E and dips 10° W.

38.87 (38.79) CULVERT 63 Constructed 1831-32. The circular arch is cut sugary gray quartzite from Sugarloaf. The span is 8 ft. with a 4 ft. rise and has 14 ringstones and a keystone in the face. The parapet and coping are 6 ft. high. The spandrels, wing walls and parapet are coursed red sandstone rubble, New Oxford Formation. The

(138)
carried away by freshet, August 24, 1842 and was rebuilt.

M.39: 408.15 546.55

39.24 (39.17) **WASTE WEIR** This weir has a concrete frame with 3 gates for drop boards, 2 of which have paddle gates at the base. The waste weir replaced culvert 64 which constructed 1830-32 with a span of 6 ft.

*From entire canal on loan, delta in green extends 3000 ft. downstream. 100 ft. upstream. *

From NW, shows waste weir and lock.

39.44 (39.37) **LOCK 26 FITCHS, WOODS LOCK** 8 ft. 11 ft.

constructed 1830-33. The face of the lock is cut red and gray sandstone of the New Oxford Formation. The breast wall is at the upper end of the upper recess, similar to all locks west of Cumberland. The upper end of the lock is now blocked by a timber dam. The lock formerly had an extension at the lower end but only a low bank in the canal and an elevated towing path extending south 150 ft. remain.

The flume originally was constructed in 1835, and later rebuilt 6 ft. wide x 5 to 8 ft. deep behind the site of the 131
No rank gates in process. On the north side. little in coping on passage for the arms of the lockhouse. A concrete, board-insert gate is at the head of the flume. Lockhouse (no. 18) on the berm was constructed in 1829-30 and burnt in 1959. The foundation for the lockhouse contains gray and red medium grained sandstone (New Oxford Formation), containing quartz, mica, and chips of red mud and black and green metamorphic rocks. Quartz pebbles up to 1/4 inch diameter are also prominent in the gray sandstone. The doorstep is white granite with quartz, biotite, and dull gray orange-tinted feldspar. The lock was damaged by Confederates in a raid on July 16, 1864.

CULVERT 65

Constructed 1830-32. The coping and arch are cut Seneca red sandstone. The arch has a 16 ft. span and an 8 ft. rise. 22 ringstones and keystones are in the face of the arch. The abutment is 1 ft. high and the parapet and coping are 3 ft. high. The sandstone is black, fine-grained, and reddish-orange in color. The arch is constructed of Seneca red sandstone (New Oxford Formation). A freshet on the berm, 0.51 mi.

Culvert 65 to reported point from culvert.
Old Overfall Waste
39.44
(408.65)
6 July 1975

Red sandstone, coursed rubble
August 24, 1842 destroyed two-thirds of the arch and the culvert was rebuilt in 1842. There is now a small breach in the arch on the towing path side of the canal prism. The culvert was rebuilt in 1842. There is now a small breach in the arch on the towing path side of the canal prism.

39.64 ~ August 24, 1842 destroyed two-thirds of the arch and the culvert was rebuilt in 1842. There is now a small breach in the arch on the towing path side of the canal prism.

Site of Old Overfall
A wall on the river side of the towing path is the remains of an old overfall. The overfall has a 4 tier base with a channel opening. The sides are 3 tiers high and are red sandstone of the New Oxford Formation.

SITE OF OLD OVERFALL

547.50 Small stream enters canal on berm.

40.22 - Culvert 66 - not seen (reported 0.51 mi from Culvert 65)

TERRACE ON BERM

20 ft. above canal and rising inland to 50 ft. at the base of a hill, is a terrace strewn with river-worn pebbles and cobbles.

547.50 Small stream enters canal on berm; no siltation

40.67 (40.71) CULVERT 66

Constructed 1830-31. This culvert is silted to the top of the arch (1971). The arch has a 6 ft. span with a parapet of gray sandstone, New Oxford Formation - found in small boulders 30 ft. diameter, feeds 3 ft. in concrete pipe 3 ft. deep.

40.80-41.00 (40.85-41.05) POWER PLANT

The Dickerson Power Plant
2
3
5 -
6
8
9

Plant of the Potomac Electric Power Company is on the hill on the berm. The outlet for cooling water from the plant crosses the canal at 40.80. The intake is on the river opposite the power plant.

MP 41- 410.05 5-48.36

41.00 (41.06) **WHITES FORD** Opposite the north end of the power plant is the site of a ford used by Confederate General Robert E. Lee (September 4-7, 1862), Col. J.E.B. Stuart (October 1862) and General Jubal (July 14, 1864) to cross the Potomac River.

41.04-4105 (41.11-41.13) **OUTCROP ON BERM** A cliff 40 ft. high, is formed of dark gray, medium grained sandstone and some red sandstone (New Oxford Formation). Gray shale with mud chips 1/4 to 1 inch diameter is interbedded with the sandstone. The strike is NSE and the dip 10\(^\circ\) W.

548.58 low ledge; stream enters canal on berm, small; no delta.

41.15 (41.25) **OUTCROP ON BERM** A low ledge of New Oxford red sandstone, 10 ft. thick, over a sill of diabase, 15 to

(143)
20 ft. thick is on the berm. The beds slope to the south along the apparent dip.

OUTCROP ON BERM

41.27 (41.36) Ledges on the berm up to 25 ft. high, New Oxford red sandstone, strike N45°E and dip 10°NW. The apparent dip is 5° to 10° downstream. A sill of well-jointed diabase lies over the sandstone at the south end.

CULVERT 68

41.31 (41.39) Constructed 1830-31. The coping and arch are cut red and gray sandstone, New Oxford Formation. The arch has a 6 ft. span and a 3 ft. rise with 12 ringstones and a keystone. The abutment is 4 ft. high and the parapet and coping 2 3/2 ft. high. The pavement is 1 ft. thick at lower end of culvert. Wings, spandrels and the parapet are rough, hammer-dressed red and gray sandstone. The culvert is undermined and the south side of the arch and the wings on the towing path side are hanging Ok. in 1977, Rebuilt.
constructed 1829-32. The face of the lock is cut Seneca redstone and some gray (pink tinged) sandstone, New Oxford Formation. A block of gray granite is on the berm side of the middle of chamber, 1 tier from top. The coping is from Lees Quarry, Seneca and ashlar from the ledges 2 1/2 miles north of the lock. Masons' marks are in the lower recess towing path side \(\wedge \), 15 ft. north of the lower recess, towing path side, 4th tier down \(\vee \). The upper extension was built in 18... by removing the head of the lock above the upper square quoins. A high embankment wall of red sandstone rubble, 150 ft. long beyond the upper end of the lock, with a timber breast wall 4 ft. high at the upper end are remnants of the extension. Iron rods and 2-inch eye bolts remain in the upper end of the extension. The flume on the berm side of the lock has a concrete culvert.
15 ft. long and control gate with board inserts at the lower end. Lockhouse no. 19 is on the towing path. It was constructed in 1829-30 and is built of sugary red sandstone and fine grained dark red sandstone (New Oxford Formation).

The sandstone in the lentils over the doors in the rear of the house has prominent mud chips. The front door step is white quartzite from Sugarloaf.

A concrete frame, 3 gate waste weir is at the upper end of lock; 2 of the gates have paddle valves, the other gate has insert boards. The spillway on the river side is 20 ft. long with a 2 ft. drop at the end. The walls are red sandstone rubble. The original waste weir built in 1832 was a masonry overfall. Date Jan. 26, 1915 or riverside in concrete.

Lock 27 is at the lower end of the 8-mile level.

The roadway on the berm extends north from the lock to the Little Monocacy Culvert.
41.47-41.98 (41.56-41.98) OUTCROP ON BERM Low ledges of New Oxford red sandstone are on the berm; a low flood plain is on the river side of the canal.

41.98 (41.98) CULVERT 69 LITTLE MONOCACY CREEK Constructed 1830-32. The coping and arch are cut coarse-grained, pink New Oxford sandstone. The arch has a 20 ft. span and a 15 ft. rise with 36 ringstones and a keystone. The abutment is 4 ft. high and the parapet and coping are 5 ft. high. The spandrels, wings and parapet are hammer-dressed pink sandstone. The culvert was undermined by a freshet in 1843 and was repaired. It was washed out by a freshet and rebuilt in 1878 and rebuilt again in 1887. The spandrel, parapet, and face of the arch on the berm have fallen (1971).

The road from Lock 27 and from the Martinsburg Road to Sprinks (Haulvigs) Ferry, near mouth of Little Monocacy Creek, formerly passed through the culvert.

Concert and facing on berm.

MP 42 - 411.05
42.00-42.12 (42.00-42.12) BASIN The wide area in the canal, 500 ft. long x 100 ft. was a wide holding basin for boats waiting to cross the Monocacy Aqueduct. Rubble foundations of a former warehouse and wharf are at the north end of the basin. An old store 200 ft. on the northeast corner of the basin, was 2 stories high with the lower story built of stone and the upper story of clapboard. It is now in ruins.

MONOCACY AQUEDUCT Constructed 1828-33.

The aqueduct is 438 ft. long between abutments and 516 ft. between wing ends. The coping is 30 ft. above mean water level and 34 ft. above the foundation. The 7 segmental arches, each have a 54 ft. span and 9 ft. rise. The piers are 10 ft. thick with pilasters 7 ft. wide projecting 1 to 2 ft. beyond the end of each pier. The coping and parapet are 7 ft. high. The waterway on top of the arches is 19 1/2 ft. wide. 8,500 perches (210,375 cu. ft.) of
Sugarloaf Mountain Quartzite (Precambrian?) were used in the aqueduct; mainly from Nelson's quarry and another quarry on flanks of Sugarloaf 5 miles northeast of aqueduct. The white quartzite is in cut facings and the red quartzite is in the waterway. Some of the facing has split from frost action beginning in winter of 1828-29. The red quartzite weathers rapidly and much of it is now crumbly. The arches are cracked along the borders of the waterway and the pilasters and spandrels are cracked and pushing out (1971). The aqueduct has settled progressively with the greatest settlement of 1 ft. at the west end. This settlement is shown by the position of the plinth stones at the base of the piers exposed during low water. A wooden railroad made of L-shaped grooves in logs 12-16 ft. long, 8 to 10 inches in diameter was built in 1832 to carry the stone from the quarries to the aqueduct (Boyd,); sleighs were used to transport the stone in the winter of
Original iron railing is partially intact on the towing path side of the aqueduct. Quartzite posts are at each end of the railing. Lead fills the knobs capping the iron railing posts and is exposed 6 sections east of quartzite post at west end. The circular iron balusters show forge laminations in the rope cut grooves near the ends of the railing. An 8-inch bull ring is on the berm coping at the west end of the aqueduct. Vertical grooves, 4 inches wide in the inner side of the parapets at the west end of waterway were for stop gate boards. On Sept. 8, 1862, Confederate General John G. Walker attempted to drop the stonework of the aqueduct by prying the masonry apart after drilling for blasting holes proved futile; little damage was done.

The Baltimore and Ohio Railroad bridge to the north is 350 ft. long, consisting of 3 deck plate girder spans on the original stone piers with concrete extensions. The...
original timber span was destroyed in the Civil War.

42.30 TERRACE ON BERM A broad lowland extends
41.45-41.50 BERM ON EMBANKMENT
4 miles west of aqueduct along the berm. It is 5 to 8 feet
below the towing path, 20 to 23 feet above river and rises
gently to the northwest. Scattered cobbles in tan to dark
brown sandy silt soil covers the terrace.
41.65 Indian Lake H.B.O.

42.51 411.71 549.85 CULVERT 70 LITTLE TUSCARORA CREEK

Constructed 1830-31. The arch, spandrels, and parapet are
built over arch behind western face; 15 ft. embankment above coping, flume
lunge at 45°; 15 ft. long; culvert partly collapsed.
Some red sandstone is in the parapet. The arch
has a ½ ft. span and 3 3/4 ft. rise. The parapet is 2 ft.
high. The abutments, which are 3 ft. high, are concrete
except for 3 tiers of red sandstone on the south. The berm
face of the culvert has collapsed. On the berm side the
arch has 14 ringstones and a keystone of cut New Oxford
red and gray sandstones. The embankment behind coping on
the towing path has subsided. (1971).

MP 43-480.40 East end of crushed stone embankment = 419.00
412.80 -

412.50 MP 43 = 5 1/4 Al
413.20 MP 44 = 541.35

44.05 CULVERT 71 TUSCARORA CREEK

Constructed

1831-32. The coping and arch are red sandstone reported to
be from Nelsons Quarry at Sugarloaf. The stone, however,
more closely resembles red sandstone of New Oxford Formation.

The span of the arch is 20 ft. with a rise of 10 ft. 28
ringstones and a keystone are in the face of the arch. The
abutment is 6 ft. high and the parapet and coping are 2 1/2 ft. high. The wing walls splay 45°. The spandrels, parapet
and wingwalls are coursed red sandstone rubble. Tuscarora
Creek was used as a feeder to canal from 1833 to 35, during
which time the water was rented from the owner, J.M. Crom-
well. After 1835 the water rights from the old feeder were
subleased to operate a grist mill. The canal company

abandoned rights to the water on December 19, 1836. The

feeder entered the canal at the curve, a mile west of the

Berm embankment breached; abutments undermined.

44.70 NOLANDS FERRY

Originally a ferry crossed

(152)
the canal here but in 1835 the canal company was ordered by
the Frederick County-Levy Court to build a bridge in place
of the ferry. The bridge started in 1840 and designed by
Lewis Wernwag was a wooden truss. It was completed in
1848 and rebuilt in 1858. It was torn down by Confederate
troops in 1864 and rebuilt again. The timber bridge was
replaced by an iron, pony (open), skew Pratt truss in 1876.
In 1913 it was replaced by a steel pony Pratt truss which
was carried away in the 1936 flood. The abutments that
remain are rough-dressed blocks of New Oxford red sandstone
and gray pebbly quartzite. An Indian trail crossed the
Potomac at Nolands Ferry, ferry and a ford across the
Potomac was established about 1750. A small community was
formerly at the ferry. A 4-story water pumping plant
furnishing water for the city of Frederick that was built in
1970. The masonry structure is constructed of dense, black
The canal was divided in 1828 into 367 sections, each about a half mile long, for the purpose of letting contracts for construction. Section 78, completed June 24, 1829, was the first section finished of letting of 1828. A medal or a $20 cash award was offered R. and H. Fowler, subcontractor for Hurd, Canfield and Company; Fowler took the $20.

MP45: 444.22 - 552.38

TUSCARORA CREEK FEEDER The feeder was in use from 1833 to 35 to augment the water supply for the canal until the canal opened to Harpers Ferry. The feeder was an earth flume along a shallow ravine from an impoundment on Tuscarora Creek, 1,200 feet to the north. The Tuscarora Cement Kilns were located north of the feeder and probably utilized the Frederick Limestone (Cambrian).

The first kiln was built in 1829 of fieldstone plastered across railroad, wooded area 100 ft. wide between 2 fields; at right angle to railroad, extends back to creek. Depth 20 ft. wide, embankment 4 ft. high; old feeder is straight, 8 ft. joins canal just to east.
with mud but collapsed in its first firing. By 1830 there were 5 kilns operated by Egleston and Mosher, who were also building 3 more kilns. The cement was sold to the Canal Company. In 1831 Thompkins and Burdick operated the kilns. They were closed down in 1832 because of the poor quality of the cement.

The cement was sold to the Canal Company. In 1831 Thompkins and Burdick operated the kilns. They were closed down in 1832 because of the poor quality of the cement.

OUTCROP ON BERM
Ledges of limestone conglomerate, New Oxford Formation, are on the berm. The rocks were quarried for building stone a short distance northeast of the Baltimore and Ohio Railroad and one of the quarries was cited as source of the columns in the House of Representatives.

OUTCROP ON BERM
At the footbridge across the canal to Kamp Kanahwa are extensive outcrops of limestone conglomerate of the New Oxford Formation. The strike is N65°E and the dip 25°NW. The conglomerate is cut by
fractures enlarged to fissures by solution. Pebbles and cobbles in the conglomerate are angular to subangular, 1/2 to 12 inches in diameter. Most of the pebbles are limestone in a matrix of red shale and limestone. The limestone pebbles are commonly rilled to a depth of 1/4 inch on exposed surfaces. 9 poorly developed fracture and joint systems cut the conglomerate.

Caution—It is illegal and dangerous to trespass on Railroad property. The conglomerate can be examined satisfactorily along the canal and at the berm end of the footbridge. Entry to the canal from Kamp Kanawha is private, Do not trespass.

47.56 554.89 KANAWHA SPRING The spring rises in a pool 30 ft. in diameter at river level on the towing path side of the canal. It was formerly enclosed by a dike that is now breached. The spring is a resurgence of subterranean drainage along solution fissures in the New Oxford lime
stone conglomerate. An old wooden waste weir that was under the towing path at the spring was removed in 1971. Water flow: 6' x 3' x 2% in the spring is polluted from drainage of septic tank fields which enters solution fissures.

47.72 CULVERT 72 Constructed 1830-31. The coping and arch are hammer-dressed, coarse grained gray (reddish tint) sandstone of the New Oxford Formation. The inner ring courses are red sandstone rubble. The span is \(\frac{1}{2} \) ft. circular arch and the rise 7 1/2 ft. 24 ringstones and a keystone are on the face of the arch. The parapet and coping are 3 ft. high. Buttresses are on the flanks of the arch. They extend 2 ft. out from the coping and 6 ft. out from abutment at base. The buttresses are 5 ft. wide. The spandrels, parapet, and buttresses are fine grained New Oxford red sandstone coursed rubble. The culvert rebuilt in 1869 at which time the buttresses were added. A 3 x 3 ft. breach is on the downstream side of the arch between the towing
path and the coping (1971).

48.02 **CULVERT 73** Constructed 1829-30. The semi-
circular arch is cut Seneca red sandstone with a 6 ft. span
and 3 ft. rise. The parapet and coping are 4 ft. high and
constructed of gray (pink tinge), medium grained New Oxford
sandstone coursed rubble. The arch has collapsed and the
culvert is silted. Only 4 ringstones and the keystone
show (1971). **No wings, straight face. 4 tiers + coping show.**

48.13 **CULVERT 74** Constructed 1831-32. The
coping and semicircular arch are cut Seneca red sandstone.
The arch has a 4 ft. span and a 2 ft. rise with 6 ringstones
and a keystone in the face. The parapet and coping are 5 ft.
high. The spandrels and parapet are greenstone (meta-
basalt) coursed rubble. **4 tiers, 3 ft. wide; embankment 12 ft. above coping.**

48.20 **POINT OF ROCKS, PIVOT BRIDGE** The pier in
the center of the canal is 15 ft. wide, as well as the
Bridge is 50 ft. long.
Much of color leached out of the rock. The original timber pivot bridge was built in 1833-34 by Lewis Wernwag with the masonry placed by Michael Byrne. Clearance above the canal water level is 11 ft. The span was rebuilt as a fixed bridge in 1844 and was raised to a clearance of 17 ft. in 1852. The present bridge has an iron superstructure, 71 ft. long and was in use as a main highway approach to the bridge over the Potomac until 1937. West of the bridge are large boulders of greenstone (metabasalt) and quartzite from the railroad cut along side of the canal. The railroad station at Washington Junction, 1/2 mile east of pivot bridge, is a photogenic classic of Victorian architecture. Point of Rocks was known as Johnson Point in the early 19th Century. Timber warehouse at R.R. and road. (gone 1977)

POINT OF ROCKS, HIGHWAY BRIDGE The first bridge across the river at this point was a covered timber
one with nine spans, constructed by the Potomac Bridge
Company, 1851 to 1853 and opened on Sept. 1, 1853 (Va. Dept.
Public Works, 36th Annual Report, 1851, p. 496); a ferry
was in operation previously. The road crossed the pivot
bridge and followed along the river side of the towing path
to the river bridge. In addition to highway, the original
bridge carried a narrow gage railroad to haul ore from
Virginia to the Baltimore and Ohio Railroad in 1858. The
Narrow gage ore railroad crossed the canal on a timber
trestle near the site of the present highway bridge. An 8
span, through Pratt truss iron bridge, 1460 ft. long, 40 ft.
above the river, was built by the Smith Bridge Company,
Toledo, Ohio, for the Frederick Bridge Company in 1889. It
cost $46,000 and was swept away in the 1936 flood. The
present 8 span through truss steel bridge was
built by the Maryland State Roads Commission and opened
December 27, 1937; each span is 165 ft. long and the total
Concrete piers; U.S.G.S. gage at pier in river bank, Maryland.
length of the bridges 1,689 ft.

48.42-48.60 POINT OF ROCKS TUNNEL In the early

1800's this area was referred to as the Lower Point of
Rocks in distinction to Upper Point of Rocks, now Catoctin
Tunnel (49.81-50.27). Because of the steep bluffs that
descended to the edge of the river at this and three other
places to Harpers Ferry, the right of way was in dispute
between the Baltimore and Ohio Railroad and the canal com-
paNY from 1830-32; after a long legal suit, agreement was
reached on May 9, 1833 based on an act of the Maryland
General Assembly, December 1832, passed March 22, 1833,
whereby the canal company graded both the railroad and the
canal for a total distance of about 4 miles along 3 stretches
between Point of Rocks and Harpers Ferry. The railroad paid
the canal company $266,000 in 12 monthly installments for
the work, bought 2,500 shares of canal company stock,
agreed not to build beyond Harpers Ferry until canal
canal reached Cumberland with the time limit of the C & O charter, agreed to erect a fence in the narrow areas if steam locomotives were used, and allowed the canal company 12 months to complete the joint grading. Grading commenced May 9, 1833 and was completed December 1, 1834. The fence was not built as the B&O paid the C&O $2,763 on Nov. 8, 1836 in lieu of erecting a fence and agreed to warn the canal company when a locomotive was coming. Joint construction at Point of Rocks involved 3,023 ft. of canal and 3,427 ft. of railroad. Most of the canal in this area was built on a revetment placed in the river. The grade of the railroad from 1834 to 1867 carried a double track line on a ledge cut into the bluff on the berm side of the canal. The Point of Rocks Tunnel, 788 ft. long, was started on December 16, 1865 by the Baltimore and Ohio Railroad as a part of a broad improvement program. It was holed through in 1867 and opened for operations in 1868. The line was
removed from the ledge at the base of the bluff after the tunnel was opened. The date 1902 over the arch commemorates the time when the tunnel was partly lined and faced with brick as a part of a program of improvement of the original railroad line from Baltimore to Harpers Ferry. The ledge along the canal was widened and a single track placed on it in 1961; the remaining track was placed under the center of the tunnel arch in order to increase clearance for piggyback operations on the railroad.

The cut along the ledge is in greenstone (metabasalt) of the Catactin Formation. It is a fine-grained, dark green rock with zones of schist. Originally the rock was a Precambrian lava that underwent metamorphism near the end of the Precambrian. Large, disrupted quartz veins are folded and faulted within the greenstone; calcite, generally stained brown, with distinct rhombohedral cleavage is associated with the quartz veins. Schistocity strikes
N30°E, dips 20°SE. Several faults, steeply inclined to the east, cross the face of the cut. Arcuate fractures are common and joints trend N80°W, dip 30°E; N65°E, dip 65°SE.

IT IS DANGEROUS AND ILLEGAL TO TRESPASS ON RAILROAD PROPERTY. THE ROCKS AND MINERALS CAN BE SAFELY AND SATISFACTORILY EXAMINED WHERE SPOIL HAS BEEN PLACED IN OR ALONG THE BERM OF THE CANAL.

The concrete wall on the berm was built 1913 to 1916 to replace a timber cribbing and stone revetment. The site is famous for the much-used photograph of the Baltimore and Ohio Railroad showing an express train and a passing canal boat. The photo was made in this section on order of Daniel Willard, one of the railroad's great presidents, in.
greenstone (metabasalt) extend west intermittently along
the berm to Catoctin Tunnel.

WASTE WEIR A concrete frame with 3
gates for insert boards; replaces an original overfall
built 1833. No paddle.

LOCK 28 DENTS LOCK 6 ft. lift, con-
structed 1832-34. The coping, circular quoins and upper
2 tiers in the face of the chamber on the berm are cut
Patapsco granite. The coping on the towing path side is
granite. The granite was hauled by railroad from Ellicott
City near Baltimore. The remainder of the chamber and
wings are mainly scabbled, dense white quartzite quarried
in Virginia south of Point of Rocks. The facing on the
quartzite is scalloped. The breast wall is flush with the
upper square quoins. The rubble wing wall at the west end.
of the lock, along the railroad, is mainly schist. The low
bank in the center of the canal prism, 150 ft. downstream
from the lock, is the remains of a lower extension built
in 1881. The flume, 15 ft. from lock on berm, is 6x6 ft.
Flume now filled 5-ft. wide x 5-ft. high
in section. A concrete culvert 10 ft. long is at the
lower end and an insert board weir is at the upper end of
the flume. The original flume was constructed in 1834.
Lockhouse 20 is on the towing path side. It is brick on
foundation of greenstone, granodiorite, and quartzite
rubble.

48.96 Concrete flume on river side, 10-ft. x 2-ft. high; 2-ft. coursed rubble granites.
WASTE WEIR 40 ft. west of Lock 28 is a
concrete frame, 3 gates, insert board, weir. No paddles.
200 ft. west: large mound; dirt, 25-ft. long, 15-ft. high, 15-ft. wide in canal
at mouth of run and culvert under railroad.
49.27 CULVERT 75 McGILLS BRANCH Constructed
1832. The span of the arch is 6 ft. The parapet is 2 ft.
high and is constructed of schist and greenstone rubble.
The coping is cut, medium grained Patapsco granite. The
culvert is filled to the top of the arch (1971).
B&O RR - square drain, 6-ft. span, 10-ft. high,
steel beam and concrete slab.
3 3/4 culvert: coping pushed 1/2 in. out of line, water wells
49.36 OUTCROP ON RAILROAD Greenstone (metabasalt) forms low ledges along the railroad.

49.50-49.56 OUTCROP ON RAILROAD Low ledges of greenstone (metabasalt) continue along the railroad.

49.63 CULVERT 76 SLIP BOTTOM BRANCH Constructed 1832-33. The culvert has a 4 ft. span. The coping is coarse-grained Patapsco granite; spandrels and parapet are coursed greenstone rubble. *filled to abut arch, 1975.*

49.63-49.68 OUTCROP ON RAILROAD Low ledges of greenstone (metabasalt) are exposed along the railroad.

49.70 SITE OF OLD CULVERT The culvert is now filled. A small ravine leads to the river.

49.81-50.27 CATOCTIN TUNNEL (Upper Point of Rocks, Williams Point) Joint construction of the railroad, 3,107 ft. and the canal, 2,133 ft. were made at this point.
in 1833-36. The railroad was originally a double track line on the ledge cut into the bluff on the berm. The tunnel was constructed 1867-68 and partially lined and faced with brick in 1902. The old bench along the canal was enlarged in 1961 and the eastbound track placed on it. The westbound track was moved to the center of the tunnel for greater vertical clearance needed for operation of piggyback cars. The face of the cut is 80 ft. high, 300 ft. long, in Catoctin greenstone (metabasalt). The greenstone is medium-grained with knots of biotite up to 1/8 inch size; a horizontal quartz vein cuts the metabasalt. Prominent sheeting planes strike N10°W, dip 60°W with spacing of 4 to 10 ft.; joint strike N75°E, dip 40°NNW; N30°W, dip 32°NE. Parallel vertical drill holes used in pre-split blasting are prominent in the face of the cut. The greenstone can be examined in the canal and on the berm where large blocks from cut are deposited.
Metabasalt crops out on the railroad west of the tunnel, joints at N30°W, dip 65°NE. Fractures are numerous. HB0: Bald Eagle 1/2nd.
Cliffs and ledges, 1250 ft. from tunnel to HB0 and to 700 ft. west of HB0
50.55

OUTCROP ALONG RAILROAD Cuts and ledges 40 ft. high expose Precambrian medium grained greenish gray schist at the south, fine grained schist at the center and north end. Solution pockets up to 6 inches in diameter are at the north end. Schistocity strikes N5°E, dips 45°E; joints strike N5°E, dip 65°W; N20°E, dip 50°ESE; N35°W, dip 45°NE; N30°E, dip 68°NW; N55°W, dip 75°NE; N50°W, dip 63°SW.

50.63

CULVERT 78 POPLAR BRANCH This was a road culvert constructed in 1832. The coping and arch are cut, medium-grained red sandstone, New Oxford Formation.

The arch has a span of 8 ft. and has 8 ringstones and a keystone in the face. The parapet and coping are 3 ft. high with the parapet constructed of coursed greenstone.

(169)
and granodiorite rubble. The culvert is silted and flood-
ed to the top of the arch (1971).

50.70 OUTCROP ON RAILROAD Low cuts and ledges
expose schist on the east and gray granitic gneiss to the
west. Schistocity strikes N20°E, dips 40°SE. The gneiss
varies from green gray to bluish gray and is coarse grained,
consisting of quartz and feldspar with bundles of biotite
up to 1/8 inch size.

50.87 LOCK 29 Lift 7 ft. Constructed 1832-33.

The berm side of the chamber is mainly cut Patapsco granite;
hammer-dressed quartzite is in a tier 2 tiers above the
bottom of the lock on the berm side. The upper tiers on
short rubble wall on low end of lock; coursed, at end of wing &
flume
the towing path side of the chamber, all of the lower
recess, and the lower wings are granite. The lowest 3
tiers of the towing path face of the chamber are hammer-
dressed quartzite. The granite is light gray with orange-
one block of ss. in coping on berm at lower wing corner.
tinted feldspar on weathered surface; biotite and quartz are prominent. The quartzite is scabbled with scalloped faces. Some red sandstone is in repaired sections of the chamber. The lock was lengthened by crib extension on the upper end. To make the extension the head of the lock was flume 5 to 7 ft. deep x 8 ft. wide, rubble wall; bridge on hill of lock removed above the square quoins at the upper recess. The berm embankment of the extension is well preserved; some timber from cribs are in the towing path bank of the extension. The breast wall of stone and timber at the upper end of extension is also preserved. Lockhouse no. 21 on the berm, constructed 1836-37, is brick on a metabasalt and granodiorite rubble foundation. The flume is 20 ft. on the berm from the lock and is a graded overfall, constructed in flume: round rubble, large blocks in extension area. 1834. A pivot bridge was formerly overt the lower end of the lock. NPS maintenance building along flume.

The northeast wall of the flume has rubble of dark gray schistose gneiss, dense black hornblende diorite,
dark gray schist with laminae of biotite, quartz and feldspar, and metabasalt; a block of metabasalt has a band of prismatic crystals of yellow green epidote.

WARNING—COLLECTING OF MINERALS ON PROPERTY OF THE NATIONAL PARK SERVICE IS PROHIBITED BY LAW.

51.05 WASTE WEIR This weir is 700 feet west of Lock 29 and is a concrete frame, with 3 gates for insert boards. The original overfall was constructed in 1833. No paddles.

51.10 CULVERT 79 CLAGETTY (SUGARTREE) BRANCH

Constructed 1832-33. The coping and semicircular arch are cut, medium-grained white sandstone. The arch has a 10 ft. span and 5 ft. rise with 18 ringstones and a keystone in the face. The springing line is at water level. The parapet and coping are 2 ft. high. Spandrels and the slope wings, 10 ft. embankment above coping. The parapet are coursed white sandstone rubble. The culvert was carried out by a flood in 1870 and was rebuilt. The towing path face of the culvert is hidden by dense brush.
the berm face is visible from the road.

51.35-51.46 OUTCROP ON RAILROAD Blue to green gray gneiss with schistose zones is exposed along the railroad. The gneiss is primarily quartz, feldspar, chlorite and biotite with small garnets; it is deeply weathered to a brown crumbly rock. The schistose zone has coarse grained, pebbly quartz veinlets. The rock can be examined in the bed of the canal where there are large boulders.

51.51 CATOCTIN (No. 3) AQUEDUCT Known as the Crooked Aqueduct because of the curves on the approaches going and running toward off axis and in canal prism east that were required to place the aqueduct at right angles to the stream channel. Constructed 1832-34. This aqueduct was 92 ft. long between abutments and had 3 arches. The center arch was elliptical with a 40 ft. span and 10 ft. rise. 38 ringstones and a keystone were in the face.
The side arches were semicircular with 20 ft. spans and 10 ft. rises. Each arch had 28 ringstones and a keystone. The ringstones were granite cut at Ellicott Mills near Baltimore. The parapet and coping were 7 ft. high; the coping was 27 1/4 ft. above low water, 33 ft. above the foundations. The towing path parapet was 7 ft. thick and the berm parapet 5 ft. thick. The waterway was 25 ft. wide. The piers were 6 ft. thick and built of ranged rubble of biotite granite. Rough faced granite with cut beds and joints were in the spandrels, parapet and wing walls; some repair blocks of Seneca red sandstone at ends of the waterway on the berm. The railing along the towing path was wrought iron and at the east end a three-piece laminated forging that formed the rods is prominent where bent and separated. The contractor who built the aqueduct was accused by canal company of ordering and accepting undersized stone and a serious breach occurred in the area.
of the wing walls in 1835. A wooden trunk was placed in the waterway and the stone work was repaired. In April, 1838 a breach occurred at the east end and a wooden trunk was placed in the waterway. The trunk gave way June 18, 1838 and a wing wall fell. The stone work was repaired.

Serious leakage developed in 1859 and by 1870 the aqueduct had to be partly rebuilt. The berm wall was pushed 15 inches out of line and was leaking badly in 1873. The center arch began sagging in the 1920's because of the west pier which was weak. It was repaired but the berm parapet, spandrels and part of the arches fell in early 1950's. By 1960 the center arch was hinged at 4 points, sagged 1 ft. and was 1 ft. out of plumb; the west circular arch was compressed. On September 30, 1973, the center and west arch collapsed during a freshet on Catoctin Creek.

Baltimore and Ohio Railroad bridge no. 39 is north of aqueduct. It consists of 2 arches with hammer-dressed...
granite ringstones and spandrels, piers, abutment and
parapet of limestone; coping of granite. 20 ft. rise, 6 ft. span
Antwerp of medium gravel, green gray gneiss along RR.

51.91 SITE OF SQUARE DRAIN JACKS (CLAGETS) BRANCH

Constructed 1835. This drain is now covered. The square
4 ft. by 10 ft. w.

drain under the railroad, 4 x 6 ft. in size empties into
the canal. The prism is silted to the towing path level.

From mile 52 west the fill gradually tapers for 3,000 ft.

It also tapers east to the aqueduct. The fill contains
about 26,000 cubic yards of silt, sand, and gravel deposit-
ed since 1924 indicating that creek carries at least 550
cubic yards of soil into canal per year from a drainage
basin of about 5,000,000 square feet which is equivalent to
removal of about 3 1/2 inches of soil per century over the
entire basin.

52.00-52.09 LARGE BOULDERS ALONG TOWING PATH The

boulders are Precambrian dark green gneiss, mainly quartz

(176)
CULVERT 81 Constructed 1832-33. The coping and arch are cut Seneca red sandstone. The arch has a 7 ft. span, 2 ft. rise with 10 ringstones and a keystone. The parapet and coping are 4 ft. high. The spandrels and parapet are quartzite and granodiorite rubble. The berm side of the culvert is plugged with debris. There is a washout in the berm bank at the culvert.

CULVERT 82 LITTLE CATOCTIN (MIDDLE) CREEK
Reconstructed 1975; concrete base on berm side; flared wings; rubble gneiss and granite. Constructed 1832-33. The circular arch of cut Seneca red sandstone and limestone has a 16 ft. span and an 8 ft. rise. 24 ringstones and a keystone are in the face of the arch. The inner ring courses are biotite gneiss rubble. Spandrels and wings are coursed quartzite and gneiss rubble with some cut stones. The waterway and berm side of the arch have fallen and the parapet on the towing path side has been replaced with an earthen embankment 8 ft. high. The culvert collapsed 1847 and was rebuilt in 1848-49. The
culvert was formerly used as a road culvert.

The Baltimore and Ohio Railroad bridge on the berm has coping and a semicircular arch made of cut granite. The span is 16 ft. with an 8 ft. rise. 38 ringstones and a keystone are in the face of the arch. The spandrels and parapet are hammer-dressed limestone. 5 ringstones and coping.

The span is 16 ft. with an 8 ft. rise. 38 ringstones and a keystone are in the face of the arch. The spandrels and parapet are hammer-dressed limestone. 5 ringstones and coping.

53.20 CULVERT 83 Constructed 1832. The coping and semicircular arch are hammer-dressed quartzite. The arch has a 4 ft. span and 2 ft. rise with 8 ringstones and a keystone in the face. The abutment is 3 ft. high and the parapet and coping are 5 ft. high. The spandrels and parapet are coursed quartzite and gneiss rubble. The pavement has a 1 ft. drop on the lower side of the culvert.

53.24 Informal sketch shown on Marshall map for Branch.

(Tobacco House Branch)

53.60 CULVERT 84 Road culvert constructed 1832-33.

The coping and circular arch are hammer-dressed dense, light gray quartzite. The span is 10 ft. with a 5 ft. rise.
16 ringstones and a keystone are in the face of the arch. The abutment is 4 ft. high and the parapet and coping are also 4 ft. high. The spandrels and parapet are coursed rubble quartzite and green biotite gneiss. Outcrops of gneiss are in the low bluffs on the north side of the railroad yards. A terrace of brown sandy silt soil is on river side of canal and rises 20 ft. above canal to west. 8 ft. embankment above coping; flared wings

54.05 CULVERT B5 Constructed 1832-33. The circular arch is cut Seneca red sandstone, with a 5 ft. span and a 2 1/2 ft. rise. The parapet and coping are 3 ft. high. The coping is cut dense gray quartzite and the spandrels and parapet are gneiss and quartzite rubble. The culvert is filled to the top of the arch (1971). Flared wings

54.10 TERRACE ON RIVER SIDE There is a terrace 20 ft. above towing path. A swale 200 ft. wide is between the canal and the terrace; the swale formerly used as a picnic area.
landing field for light aircraft.

54.60 CULVERT 86 Constructed 1832. The circular arch is cut Seneca red sandstone with a 6 ft. span, 3 ft. rise and contains 6 ringstones and a keystone in the face. The abutment is 3 ft. high. The spandrels are quartzite and gneiss rubble. A 12-inch iron pipe carries a sewer line through the culvert and connects with a treatment plant 50 ft. west and 50 ft. south of the canal. The new treatment plant was constructed in 1971 adjacent to the old one. Water pollution control facility.

54.80 CULVERT 87 Constructed 1832. The coping and arch are cut Seneca red sandstone. The arch has an 8 ft. span and a 4 ft. rise with 14 ringstones and a keystone in the face. The springing line is at stream level. The parapet and coping are 4 ft. high. The spandrels and parapet are gray quartzite and gneiss rubble. The culvert
was rebuilt in 1863 but was washed out and rebuilt again in
1873.

54.97 WASTE WEIR This is a standard weir with a
concrete frame and 3 gates for insert boards. Gray, coarse
grained quartzite and hornblendite rubble are in the
pavement on the river side of the weir. The original over-
fall at this site was constructed in 1833.

55.00 LOCK 30 BRUNSWICK Constructed 1832-33.

Cut Seneca red sandstone and dressed gray quartzite are in
the face of the chamber. The quartzite facing is ribbed
and the sandstone under the bridge is crumbling. A bank
for an upper crib extension is on the berm at the upper
end at the upper end of the lock. The stone work above
the square quoins in the upper recess was removed to extend
the lock. A flume in a concrete culvert, 8 ft. wide, 6 ft.
high is 15 ft. from the lock on berm. The original flume
was built in 1834, and water from the flume powered an old
caisson or canal 200 ft. away from the lock.
mill on the northeast side of the lock. Lockhouse 22, a frame structure, was constructed in 1836 and was formerly 50 ft. north of lock opposite the northwest corner of the mill. The bridge across the lock was originally a pivot bridge built in 1841 on a design of Lewis Wernwag. It was rebuilt in 1869 and the last reconstruction was 1932.

The first highway bridge over the Potomac River at Brunswick was built by the Loudoun and Berlin Bridge Company in 1855-56, and opened on December 1, 1856. It was a timber covered Howe truss, 9 spans, 1,568 ft. long and cost $54,500. It was burned by Confederate troops on June 7, 1861 and a pontoon bridge was put in use in October 1862. The bridge was rebuilt in 1895, as a privately owned toll bridge. It was a 9 span, steel, Warren truss, curved chords without verticals. One steel Warren through truss, standard without verticals was over the canal. The bridge was purchased by the State of Maryland in 1922. The
present bridge was built on the north side of the 1894 spans by the Maryland State Roads Commission in 1953-55 and was opened July 28, 1955. It cost $2,850,000 and consists of 16 haunched deck girder spans over the river, canal and railroad. It is 2,425 ft. long with a 26 foot roadway. The Baltimore and Ohio Railroad yards along the berm of the canal were built in 1890-91. They were re-built and an eastbound yard added in 1906-07. The town was formerly named Berlin but was changed to Brunswick 1890.

55.33 CULVERT 88 Constructed 1832. The coping and semicircular arch are cut glassy gray quartzite. The arch has a 8 ft. span and a 4 ft. rise. There are 14 ringstones and a keystone in the face of the arch. The parapet and coping are 4 ft. high. The spandrels and parapet are coursed glassy, gray quartzite rubble. The culvert is silted to 1 ft. above the springing line. (1971).
56.08 CULVERT 89 Constructed 1832-33. The arch is cut red and gray sandstone and has an 8 ft. span and 4 ft. rise. 14 ringstones and a keystone are in the face.

The abutment is 2 ft. high. The parapet and coping are 5 ft. high. The coping is cut white, fine grained sandstone; the spandrels, parapet and wings are quartzite rubble.

56.45 CULVERT 90 Constructed 1832. The semi-circular arch is cut Seneca red sandstone. The arch has a 6 ft. span, 3 ft. rise, and 12 ringstones and a keystone in the face. The parapet and coping are 2 ft. high. The coping is cut pebbly quartzite; spandrels and the parapet are coursed quartzite rubble.

57.00 CULVERT 91 Road culvert, constructed 1832. The arch is cut gray sandstone with a 12 ft. span and a 6 ft. rise. 18 ringstones and a keystone are exposed in the face. Possibly one additional ringstone is on each...
side of arch beneath the water. The coping, of cut red and
gray New Oxford sandstone, rests on the keystone. The span-
drels on the south and the south wing are coursed gray
quartzite rubble; the north spandrels are coursed red and
10 ft. embankment above coping.
gray New Oxford sandstone rubble. The arch is intact on
the berm but the spandrels, wings and parapet have fallen.*
Embarkment has been breached.
Small basin upstream of culvert,
57.36 CULVERT 92 Constructed 1832. The circular
arch is cut Seneca red sandstone with a 6 ft. span and a 3
ft. rise. 8 ringstones and a keystone are visible in the
parapet.
3 tiers of spandrels = 3 ft. + coping. 10 ft. embankment above.
face. The parapet and coping are 3 ft. high. The coping
is dressed gray quartzitic sandstone; the parapet is gray
quartzitic sandstone rubble. The culvert is silted to a
foot from the top of the arch (1971).
Footbridge 60 ft. east of culvert 92.
57.50-57.85 OUTCROP ALONG U.S. 340 About 600 feet
of Wevertown quartzite with shale zones are exposed in the
high road cuts 600 ft. north of canal. The dip 35°E and
the rocks are on the west flank of an overturned anticline.
This is the type locality of the Weverton Formation.

SITE OF WEVERTON

Weverton was founded in 1834 by Casper Weaver, incorporator of the Weverton Manufacturing Company. Four buildings were erected between the canal and the railroad after 1847. A dam 3 1/2 ft. high was built in 1847 across the river on the lower of two ledges of rocks 500 ft. below Lock 31. It cost $60,000 and was removed in 1874. Channel along canal, Lock 31 to below forebay.

The towing path was raised above Lock 31 to protect the canal from the impoundment. Weaver died in 1849 and the company was reorganized. A bid for the new National Foundry failed in 1858 and the town declined. In 1861, the Henderson Steel and File Manufacturing Company opened a plant in one of the old buildings and a cotton mill was erected but not operated. All buildings now gone and only the forebay gates on the river bank 500 feet below Lock 31 remain. The
3 gate walls and gate recesses are coursed quartzite and phyllite rubble walls.

From 150 ft. to e.w.

58.02 LOCK 31 8 ft. lift constructed 1832-33. The mill race wall on north; quartzite rubble; 10 ft. rubble arch in well 25 ft. long & of well. The berm face of the lock is mainly dressed gray quartzite with some gray limestone in the chamber. The towing path face is concrete. Blocks of partially dressed limestone and quartzite removed from the towing path side of chamber are on the river side of the towing path. A low embankment on the berm side below the lock is the remnant of cribs for a lower extension. The flume is on the berm between the lock and the lockhouse and has a concrete frame waste gate, 3 ft. wide X 5 ft. high, at its head. An overfall, 6 ft. deep, 8 ft. wide with a 4 ft. drop is at the lower end of the flume. A culvert is under the breast wall of the lock.

The face on the towing path side, is a circular arch of cut Weverton quartzite. The span is 6 ft. and the rise 3 ft.

8 of the 12 probable ringstones and keystone show.

Lookhouse: 1 1/2 stories, brick on north side of berm; wood shanty on lower berm.
The parapet is 6 ft. high and built of quartzite rubble. A 5 ft. dry wall and 4 ft. embankment are above the top of the parapet. The culvert is filled to top of the arch with silt and trash. On the berm the culvert face is in cistern 20 ft. deep, lined with scabbled quartzite. 2 1/2 ft. of masonry is between the culvert and the breast wall beneath the lock. Lockhouse 23 constructed of brick in 1833 and is on the berm side of the lock. 30 ft. west of the head of the flume is a stone arch and race for an old mill. A pivot bridge was formerly over the middle of the lock. It was built in 1835 by Lewis Wernwag.

58.09 WASTE WEIR A concrete frame, 3 gate, waste weir is beneath the towing path. The lower wings are phyllite rubble. The original overfall at this site was built in 1833. Insert brek, no paddle gate.

58.11 - Informal weir, 0" wide gasser point (Pike's)
58.12 BOULDERS IN TOWING PATH Large gray quartzite, Weverton Formation, are prominent in the towing path.
58.15 CULVERT 93 ISRAEL CREEK Constructed 1832. The coping and elliptical arch are buff gray sandstone. The arch has a 28 ft. span, 8 ft. rise, and 26 ringstones and a keystone in the face. The springing line is at stream level. The parapet and coping are 3 ft. high. The spandrels, parapet and wings are dark gray, pitted, medium grained metagraywacke with quartz and a soapy appearing feldspar predominant. 10 ft. embankment abut culvert.

58.36 OUTCROP ON RAILROAD Slabby beds of Catactin greenstone (metabasalt) and exposed in shallow railroad cuts.

58.59 OUTCROP ON RAILROAD Slabby beds of Catactin greenstone (metabasalt) continue in this area.

58.72-58.99 MILLES NARROWS Joint construction of 3,500 feet of railroad and 3,052 ft. canal were made here in 1833-35 and included reconstruction of a
section of the Harpers Ferry-Frederick Town Turnpike. Outcrops of granite gneiss are in ledges along the railroad and the high bluff at 58.81. Sheeting dips 30°SE, schistocity strikes N40°E and dips 45°SE. A pile of granitic gneiss with conspicuous quartz crystals is on the river side of towing path. At 58.90 the revetment between the canal and the railroad is made of trimmed limestone blocks with sandstone rubble at the base. 100 ft. east, around curve, is a concrete wall extending 400 ft. to the east. So east railroad this on gneiss a broken concrete base with limestone.

59.08 **OUTCROP ON RAILROAD** Granite gneiss crops out in a 40 ft. bluff. A small cave is 20 ft. above the railroad.

59.22 **OUTCROP ON RAILROAD** Massive granite gneiss, with arcuate fractures forming irregularly, rounded surfaces is exposed in a bluff.

59.36 **OUTCROP ON RAILROAD** Granite gneiss is exposed in a low ledge.
SANDY HOOK BRIDGE Construction of this bridge was begun in 1941, suspended in 1943 and resumed in 1946. The bridge was opened October 18, 1947. It is a continuous Warren deck truss with arched lower chords, 2,246 ft. long. It cost $1,146,000 and carries U.S. 340 across the Potomac River. East of the bridge is a 4 ft. concrete pipe culvert under the railroad that drains into the canal; the canal is silted to the level of the towing path (1971). This is the site of canal culvert 94, 4 ft. span, constructed 1833, but now buried. Sandy Hook was formerly known as Keettryst. A small bridge over the canal here was originally constructed in 1834.

CULVERT 95 Constructed 1833, later replaced by an embankment. A metal pipe now drains the canal at this point. A large block of stone 12 ft. long, 7 ft. wide, 5 ft. high is on the berm. It is gray fine-grained to dense Weverton Quartzite, with quartz veins 1/4 to 1/2

Sandy Hook H.B.O.
inch wide cross the bedding; quartz blebs up to 2 inches wide, 6 inches long, are in zone 6 to 10 inches wide.

59.86 OUTCROPS IN RIVER Ledges of granite gneiss are prominent at low water. Blocks of granite gneiss are in the revetment on the river side of the towing path.

59.90-60.70 REVETMENT The river side of the towing path is protected by a wall constructed of quartz-mica-schist and hornblende rubble. Wall alps 45° towards river.

60.21 LOCK 32 8 ft. lift, constructed 1832-34. The stone is mainly cut, wavy-banded gray limestone from quarries in the Great Valley. Some cut blocks of granite gneiss from a quarry on the Virginia side of the river, up to 5 ft. long, 2 ft. wide, 1 1/2 ft. thick, are at the upper recess on the towing path side. The granite has mica in short, straight segments, many intersecting at right angles, glassy feldspar and very little quartz. The

(192)
coping on the berm side is mainly cut granite. The lock has
washed badly and only the 2 to 3 tiers of the chamber re-
main on the towing path side of the chamber. Most of the
chamber intact on the berm. 2 tiers of the upper berm
recess are gone and the wings have fallen. The towing path
has washed down 3 ft. below the level of the coping (197%).
Large granite blocks are on the towing path at the midpoint
of the lock. The flume is 15 ft. on the berm side of the
lock and has a concrete culvert 4 ft. high x 6 ft. wide,
10 ft. long at its lower end. The lock had a lower extension
but only a low bank in the canal, covered in many places by
wash, remains. Rectangular slots on the lower berm coping
were for attachment of the extension cribs. Breast wall of
the lock is 1 1/2 ft. above the square quoins of the
upper recess.

Lockhouse no.24, constructed 1836-37, was formerly on
the side of the railroad embankment at the midpoint of the

(193)
lock. It was reported to be frame with a rubble foundation but photos indicate it was built of masonry. In 1843 a train hit the northeast corner of the lockhouse as the railroad tracks were laid without regard to foundation of lockhouse and the superstructure of house was built after the railroad construction was complete.

Joint construction of 1,100 feet of railroad and turnpike and 1,126 ft. of canal was made between Lock 32 and Harpers Ferry in 1833.

The wall on the river side of the towing path is mainly quartzite containing pebbles up to 1/4-inch size and prominent veins of quartz; there is some quartzitic phyllite in the wall.

Weverton quartzite crops out in ledges above the railroad and along the road at the east end of the lock where it forms a prominent recumbent anticline. Ledges
of quartzite in the river, strike N30°E, dip 60°SE. There are large potholes in these ledges.

Diagram of structure- use Md. G.S. perspective original 8" x 12"; for reduction to 2.6" x 4

500 ft. west of the lock the remains of an old iron truss from the Shenandoah River Bridge, Harpers Ferry, are visible at low water. The bridge was swept away in the March, 1936 flood.

60.30-60.63 WALL ON BERM A massive wall, along the railroad and highway, is mainly coursed quartzite rubble. Coursed rubble wall on berm, 20 ft. high; road at top; formerly R.R. roadbed.

60.36 VIEW SOUTH TO VIRGINIA Ledges of Weverton quartzite are prominent on the south side of the river. A talus slope is above the ledge along the power line. In ledge to the west, under power line, the rock beds are horizontal; 1,000 ft. east, at the east end of ledges, the beds dip 20°SE.
Diagram of structure on Virginia shore
original 8"h x 10"l; for reduction to 3.2" x 4"l.

60.67

SHENANDOAH INLET LOCK Constructed

1832-33. This is a single set of locks that allowed boats to enter and leave the canal from and to the river. This was the main access to the canal for trade on the Shenandoah River, which had been improved for navigation by the Potomac Company and later by the New Shenandoah Company.

The lock is built of dressed limestone and quartzite.

A towing path bridge, built originally by Lewis Wernwag 1834-35, crossed the tail of the lock. The lock was badly washed in the flood of 1877 and was totally ruined in the flood of 1889. In reconstruction of the canal in 1890-91, the lock was sealed off. The lower end of the lock is now partly intact with the lower recess and wings standing.

The lock chamber is filled with boulders and finer sediment.

A guard wall 15 ft. high, of quartzite and quartzitic
phyllite now cuts diagonally across the upper part of the
lock. A dam across the Potomac River just downstream of
the inlet lock was planned in 1831 to form a pool for
traffic from the Shenandoah River and as a feeder but the
plan was abandoned in 1832 and the Government Dam (no. 3).
above Harpers Ferry substituted as a feeder.

60.68-60.70 HARPER'S FERRY The junction of Shen-
andoah and Potomac Rivers has been the site of 11 bridges.
The first bridge was built in 1824 by Catherine and James
Bite Wager, heirs of Robert Harper, founder of Harpers
Ferry. It was a wagon bridge, timber, covered and extended
across the Potomac from the culvert at the lower end of
Lock 33 to just north of the point of the junction of the
rivers. It had 4 spans, 3 of equal length with a somewhat
shorter one on the west end. It was dismantled in 1837
after the Virginia Legislature passed an act transferring
traffic to the newly completed railroad bridge. The base.
of the piers for this bridge are visible at low water.

The culvert at the lower end of Lock 3 formed the approach to the bridge.

The Baltimore and Ohio Railroad reached the east bank of the river at Harpers Ferry December 1, 1834 and its bridge no. 40 was constructed 1835-36 and opened in March 1837. It was designed by Shaw and Wernwag and was a timber-covered bridge, 900 ft. long with 6 spans each 85 to 135 ft. long over the river. 1 skew span, 100 ft. long, was over the canal. The spans were 3 framed trusses abreast, two with a total width of 40 ft., carrying two railroad tracks on the south side and one 12 ft. wide carrying a common road on the north. The masonry work was by Charles Wilson and the superstructure was built by Lewis Wernwag. The timber for the bridge was cut at a mill owned 1824-43 by Wernwag on Virginus Island at Harpers Ferry. The bridge cost $23,450.60 plus $5,596.34 for repair to the piers. The
spans had a tracking path on the downstream side to permit towing of canal barges from the Shenandoah River across the Potomac to the inlet lock. Two curved spans on the north were added to the west end of the bridge in 1840-42 when the railroad was extended to Cumberland. The westernmost curved span collapsed September 15, 1844 under a freight train and was rebuilt. It collapsed again on March 18, 1845. (B&ORR 1837, 1844, 1845). A new cast iron through truss bridge designed by Wendel Bollman, Master of Road for Baltimore and Ohio Railroad, was begun in the Autumn of 1851. One span was erected at the west end of the bridge in 1852. The truss was characterized by a square truss frame with diagonal truss rods radiating from the upper part of the end posts to the base of each vertical strut, giving the appearance of a giant spider web. Seven spans and the woodwork in the iron truss were burnt by Confederate troops on June 14, 1861 and the center
span dropped by use of explosives. A trestle that replaced spans was burnt a few weeks later and a new trestle was erected only to be carried away by a flood in April 1862.

A trestle replacement was carried away by a flood again on June 7, 1862. A new trestle with iron replacing some of the wooden members was completed on June 16, 1862, but was destroyed by troops of Stonewall Jackson on September 24, 1862 after the battle of Antietam. Four additional cast iron Bollmann trusses begun in mid-1862 were completed on April 13, 1863, and withstood the flood in May of that year. However, they were demolished by Federal troops on July 5, 1863. A trestle bridge was improvised and service resumed on August 11, 1863. In April, 1864 a flood carried off the remnants of two spans and several more spans were carried off in the flood of May 16, 1864. At the end of Civil War rebuilding of the bridge using wrought iron Bollman trusses, was started. Two new spans were carried
away in flood on May 22, 1865. The piers and abutments were raised and improved in 1866 and new wrought iron Bollman trusses constructed 1868–70. The bridge, 1,708 ft. long had 7 spans, including curved spans at the west end. Each span had 3 trusses carrying a single railroad track on the south and a common roadway on the north. This bridge served the railroad until 1894 when it was sold to the Harpers Ferry and Potomac Bridge Company for $10,200 for use as a highway [toll] bridge. At this time the curve spans at the west end were cut back. The flood of 1924 carried away two of the Bollmann spans at the east end of the bridge. These were replaced by a steel Pratt through truss. The flood of March, 1936 carried away the entire bridge. After lengthy negotiations and a suit by the bridge company that involved Baltimore and Ohio Railroad's charter, the Maryland State Roads Commission purchased the rights of the bridge company for $75,000 and in October,
1936 placed planking on the 1894 railroad bridge to serve as temporary roadway. Piers of Wernwag and Bollmann bridge are intact. The pier on the side of the towing path is built of cut granite blocks from Ellicott Mills on a footing of quartzite rubble. The four piers in the river are hammer-dressed limestone in lower 13 to 14 tiers capped by four tiers of cut granite. Isolated stones on the capping were placed under the Bollman spans to raise them above flood water in 1866. The abutments are hammer-dressed limestone with some red sandstone at the top of the west abutment.

The steel bridge on the north side of the site of the Wernwag-Bollman spans is now used by the Baltimore Railroad Valley Branch. It was constructed by Pencoto Bridge and Construction Company, Pencoto, Pennsylvania in 1892-94 and opened April 1894. The eight piers contain 64,000 cubic yards of hammer-dressed "Gettysburg" granite. The west
abutment is granite with coping and backing of limestone; the east pier on the berm of the canal is limestone capped with granite. The superstructure consists of three through plate girders on the east approach and three on the west. There is 1 deck plate girder at the east abutment. The total length of the bridge is 900 ft. 10 inches and the deck is 43 ft. above low water level. The tunnel at the east end of the bridge was started in 1892 and headings met July 20, 1893. It was arched in 1896 and 536 ft. of brick lining added. A 37 ft. portal extension on the west and a 35 ft. one on the east were built to counter rockfall in 1896. The tunnel is 850 ft. long, 28 ft. wide and 24½ ft. high; 22,000 cubic yards of rock were excavated in the tunnel and 26,000 cubic yards in the approaches.

Previous to construction of the tunnel the railroad skirted the bluffs on a wide ledge on the berm of the canal. The 1894 bridge carried highway traffic of U.S. 340 as well as
Page 204 is void.
rail traffic from the Fall of 1936 to the opening of Sandy Hook Bridge in 1947.

The present Baltimore and Ohio Railroad main line bridge north of the 1894 spans was built in 1930-31 and opened June 1, 1931. It consists of 13 skew, deck plate girder spans, 1,365 ft. long, each span 100 ft. 6 inches long, except for two shorter spans of 99 ft. over the canal and 90 ft. at the east abutment. The concrete piers are 32 ft. high and the rails are 44 ft. 7 inches above low water. The bridge cost $1,000,000. The west portal of the tunnel was enlarged in 1930-31 to connect with the new bridge.

A highway bridge formerly crossed the mouth of Shenandoah. It was built in 1865 as a four span iron, through Howe truss on limestone piers and abutments and replaced an older 4 span covered timber bridge about 700 ft. upstream
that was destroyed during the Civil War. The super-
structure of the iron bridge was swept away in the flood
of 1936.

Map of bridges- 8"h x 10"w original, reproduction 3.2" x 4"

60.70 LOCK 33 8 ft. lift, constructed 1832-33.

The facing is hammer-dressed, gray pebbly sandstone with
some Seneca red sandstone. Cut stone is in the quoins
and gate recesses. Granite blocks are in the upper part
of the lock above the upper recesses. The breast wall is
4 ft. upstream from the upper end of the upper recesses.
The lock walls rise 5 ft. above the rest of the lock at
the upper recesses. Slots 12 inches wide, 6 inches deep
at the head of lock are for drop planks of the stop gate.
The miter sill is exposed in the upper recess. A 30 ft.
extension at the lower end of the lock is the site of the
former abutment of the Wagers bridge. It is built of
coursed quartzite rubble and is 4 ft. higher on the berm
Lock 33

Sketch: 7-26-75.

4 ft. abutment on upstream side;
16 ringstones # keystone,
8 ft. span culvert along.
flume; flume 12-15' wide
6 ft. deep, 12 ft. wide f.b.
batter in face of embankment
1 in 5 - Lock 33.

South end of Lock 33

Cliffs of granite, 300 ft. t high

Site of Wager Bridge

Berm

Same on
Travel Path side

(207)
A deep flume is 20 ft. on the berm. The stop gate for the flume, 12 ft. wide, is at the head of the lock. Slots for the control planks are 6 x 6 inches. The flume passes through a slightly skewed culvert, 40 ft. long, at the lower end of the lock. The culvert was part of the old Wagers bridge abutment. It has a semicircular arch with an 8 ft. span and 4 ft. rise. 16 ringstones and a large keystone are in the face of the arch. The ringstones are cut quartzite and silicic siltstone with some limestone on south face. The towing path is washed down in the lower two-thirds of the lock and the rubble and mortar backing is exposed. The lower 15 ft. of the extension is partly collapsed.

A lockhouse formerly was on the river side of the tow
ing path. It was a 2 story, frame structure and was swept away in the flood of 1936. A footbridge was formerly over
the tail of the lock. The shell of the stone building on
the berm is the old Salty Dog Tavern, burned in 1959. The
walls are silicic siltstone and quartzite rubble. The rev-
etment wall on the river side of the towing path is quartz-
ic rubble. The revetment wall on the berm between Locks 33
and 34 is silicic siltstone and quartzite. A timber crib
wall on the river side of the towing path, 10 ft. above the
level of the towing path, formerly extended from Lock 33
to the Shenandoah Inlet Lock. Also on river side, debris now under

Diagram of Lock 33 area- 8"h x 10"W, reproduce 3.2" x 4".

60.90 934.18 OUTCROP A cliff along the road on the berm
is formed of siliceous siltstone (phyllitic quartzite) of
the Harpers Formation. The beds are crinkled beds with
slippage and drag folds along the joints, and crenulations,
indicative of the intense compression undergone in folding
of the Blue Ridge. Prominent joints strike N30°E, dip 60°SE; N30°E, dip 60°NW; E-W, dip 45°S., E-W, vertical and N60°W, vertical. The bedding is obsurred by plates about 1/2 inch thick formed by cleavage which strikes N30°E and dips 20°E. Ledges of phyllitic quartzite are prominent in the river.

MP 41 = 421.60 (434.05 - 7/6/72)

61.02 421.64 OUTCROP ON BERM A 50 ft. cliff is formed of Harpers silicic siltstone. S. 20° d.s. schistosity, schistosity dips 28°W; strike N-S; joint N5°E x dip 60°E.

61.34 433.98 OUTCROP ON BERM Ledges up to 100 ft. high on berm and along the road are formed of Harpers silicic siltstone with wavy schistosity surfaces striking E-W, dip 25°S. A prominent joint strikes N15°E and dips 70°W. 38°NW. (30° d.s.?)

61.57 422.14 LOCK 34 (Goodharts Lock) 8 ft. lift, constructed 1832-33. The face is mainly hammer-dressed limestone; some white sandstone and Seneca red sandstone. Rockwall on berm Lock 33 to Lock 34; also on riverside of towpath, 2 ft. 1/2 high.
are in the upper part of lock. The lower circular quoins and the lower part of the lock are faced with fine-grained gray sandstone. Rope grooves up to 1 1/2 inches deep are in the limestone and sandstone at the east end of the lock. The upper end of the lock is blocked by a wooden gate and embankment. The flume is 15 to 20 ft. on the berm and there is concrete frame gate, 6 ft. wide, 1 1/2 ft. high. with Flume - 6 ft. deep, lined with coursed rubble insert boards, at the upper end of the flume. The embankment on the berm side at the head of the lock is probably an old approach crib. Lockhouse no. 26 on the towing path was formerly a frame structure but only the foundation of Remnant of fender crib on berm at upper end of lock, 15 ft. long. siliceous siltstone rubble remains. An outcrop of Harpers siliceous siltstone is on the north side of the lock.- Small Gravel and sandstone. Pump at lock.

OUTCROP ON BERM A 30 ft. ledge contains Harpers siliceous siltstone; the schistocity strikes N 80° E and dips 25° S, 45° N.

211
<table>
<thead>
<tr>
<th>Page 61.77</th>
<th>OUTCROP ON BERM</th>
<th>Harpers siliceous siltstone is exposed in a ledge. The schistocity strikes N40°E and dips 45°SE. Fracture cleavage dips 45°NW. A prominent joint strikes N80°E, dip 75°N. The jointing and fracturing form a rectangular pattern that is prominent on the face of the cliff.</th>
</tr>
</thead>
</table>

Diagram: fracture-joint pattern
draft - 6"h x 8"w, reduce to 3" x 4".

<table>
<thead>
<tr>
<th>Page 61.82</th>
<th>OUTCROP ON BERM</th>
<th>Harpers siliceous siltstone is exposed in an 80 ft. ledge.</th>
</tr>
</thead>
</table>

| Page 61.87-62.04 | OUTCROP ON BERM | A ledge of Harpers siliceous siltstone is on the berm. Schistocity strikes N40°E and dips 44°SE. Joints strike N35°E and dip 80°NW to vertical; arcuate fractures strike N25°E and dip 75°WNW. Solution cavities, 6 inches to 2 ft. in diameter, are at the downstream end of the outcrop. Drill marks, 2 ft. long, 4 to 6 ft. apart are in the ledge. |

| 421.40 | Intermittent outcrops L 422.53, large one at 422.47, same dip. | (212) |
UNFINISHED DAM

A masonry wall on the river side of the towing path is the abutment wall of a dam on which construction was commenced in 1859. It was stopped in 1861 by the Civil War. The wall is constructed of dark blue to black limestone from Bentz quarry, opposite mile 87 above Dam no. 4, on the West Virginia side of river.

Some blocks have crinkled, dark, clayey bands up to 1/2 inch wide; other blocks have blebs of calcite. Ledges of Harpers silicic siltstone are in the river.

DAM NO. 3 AND GUARD LOCK

The masonry and timber crib dam with concrete facing, 3 to 5 ft. high, backs a pool 3 to 4 miles long. The dam is built in a zig-zag line, 2,000 ft. long, on ledges across the river to a power canal on the west side. The first dam at this site was built in 1799 to divert water to the U.S. Government Armory in Virginia (now West Virginia). It was replaced in 1809 and 1820. The dam was repaired extensively in 1867.
New Dam below
Dam no. 3.

(gt. high = 15´h.)

8´ wide = 3 rows
8´ wide = 3 rows
20´

Toupath
after ice carried much of it away. A lock with 2 sets of
gates was at the entrance to the power canal until Civil
War time. The Guard Lock is 300 ft. above the dam and was
constructed in 1832-33 with hammer-dressed limestone. The
quoins are cut limestone. The lock is 30 ft. long, with
two sets of gates. The head of the lock is now blocked by
a wooden guard gate. A guard bank with a revetment of
Harper silicic siltstone extends from opposite Lock 35
just below the dam to Lock 36 and is now used as the route
of the hiker-biker path. A timber bridge (being reconstruct-
ed in 1971), formerly carried the towing path across the
feeder to the lower end of Lock 35. The canal between
Locks 35 and 36 occupies channels between islands now
covered by fill and is very vulnerable to floods. Ex-
tensive washouts occurred in 1852, November 1877, June 1889,
and March 1824. An outcrop of Antietam Sandstone (Cambrian)
forms a low ledge at the lower end of the guard lock. The
sandstone is quartzitic, dense, banded, and gray to white in color. The banding is 4 inches thick. The strike is N35°E and dip is 85°SE to vertical. The Antietam sandstone is also exposed in ledges in the river at the dam where the surface is stained black. Prominent strike joint in the ledges. The sandstone also forms a prominent cliff on the West Virginia shore where the dip is 45°ESE. The Potomac Company canal around Dam 3 was a sluice extending a mile downstream from the dam on the site now occupied by the present canal. The C & O Canal was opened for navigation upstream to Dam no. 3 on November 26, 1833.

62.32 1/2 lock 35 8 ft. lift, constructed 1832-34. Access to this lock is via the towing path east from Lock 36. The towing path formerly crossed the feeder on a timber bridge that is now being restored (1971). The lock constructed of hammer-dressed limestone with a block of from Knotts Quarry, 5 mi. away in Va. (W.Va.)
Drydock & feeder at
Lock 35

Guard lock
Feeder
Mound
Lock 35

Butterfly gate
opening 3' x 3'4"

Concrete supports

22'4"
15'

25'4"

1'6"
15' apart

2' x 3'4"
6" wide

9'

15' - 1

6 - 22' Notch
14'
Same approach
18'

18'

1

3' from top of wall

Concrete under rubble 4' x 4' x 18' L.

Drydock walls: rubble
Quartzite, Limestone
Harpers phyllite + river cobbles.
Seneca red sandstone at the northwest end and 3 blocks of granite at the west end and in the coping on the towing path side of the chamber. A concrete cap is at the lower end of the lock on the towing path side at the abutment for the towing path bridge. The miter sills, are intact in both recesses. A dry dock on north side of lock, built of rough rubble masonry, was 125 ft. long, 24 ft. 5 inches wide at the top, 20 ft. 8 inches wide at the base, and 8 ft. deep. 6 concrete barge supports, 17 ft. 3 inches long, 3 1/2 ft. from the bottom cross the dry dock at 14 ft. 5 inch centers. A butterfly valve and a short drainage tunnel are at the lower end of the drydock. The lower wing wall of the lock is straight, at right angles to the lock and extends across the lower end of the drydock. The original lockhouse for Locks 35 and Guard Lock 3 was in a low area enclosed by the guard bank near Lock 36. It was constructed in 1836-37 and was brick, 2 stories high, on a foundation remains.
foundation of red sandstone, limestone, quartzite and
silicic siltstone rubble. It was later used as a section
house and was heavily damaged in the 1936 flood. Only the
walls and foundation remain.

An outcrop of Antietam Sandstone forms a 40 ft. ledge
on the berm east of Lock 35.

The facing is mainly hammer-dressed limestone from Knotts
Quarry in West Virginia. A block of Seneca red sandstone
is on the towing path wall of the chamber. A 6-inch con­
crete cap is above the stone coping except at the lower
recess. A 15 ft. long embankment on the berm at the head
of the lock is the remains of a crib fender. This lock was
most troublesome to the boatmen because of its narrowness
and short length (89 ft. 11 inches, the only lock on the
canal less than 90 ft. long). The lockhouse was on the hill
Foot bridge across lock.
64.70 430.25 curved 9°

MP 64 430.95
431.08 431.55 south end of overfall
431.46 431.50 outcrop; strike N 85° E, dip 60°, 4-6' onto
curve to west & north, treated as E S
100' west - view over Potomac.

431.55 431.68 outcrop, irregular ledges up to 40' high,
L1. long curve; east.

431.72 ledge 40' high; highly fractured;
small 6 in. solution holes. L1.

431.78 ledge 20' high, prominent vertical joint, N 30° E.

431.83 ledge 30', L1. ledges 1 curve 1 west.

MP 63 431.85

431.90 bluff 20' high; 40' abn canal.

432.45 lock 36

432.52 opposite middle of lock 35, outcrop on hill
on barn. Highly fractured gray
granite, 15' ledges.

432.64 opposite upper end of lock 35 -

End at 434.55

(220)
in the woods, 40 ft. above the lock. It is 2 stories high
with clapboards on a footing of sandstone rubble. The road
from the northeast corner of the lock leads to the lock-
house.

WASTE WEIR The waste has a concrete
frame with 3 gates for board inserts. A low wall of coursed
silicic siltstone and sandstone rubble is at the toe of the
spillway. This was originally a masonry overfall construct-
ed in 1834. To the north are old manganese mines and pits
of the Potomac Refining Company, which were opened in 1876
by Wells and Davis. These openings were flooded out. In
1898 McIntosh sank a 23 ft. shaft 100 ft. north of the
canal but abandoned it within a month because of flooding.
E. R. Cooper, of Baltimore, resumed operations in 1908 and
organized the Potomac Refining Company in 1910. Shafts
were sunk to 60 ft. and tunnels extended to the ore. Pumps
were installed. However, most of this production was from
pits. The ore is along a faultplane with the Harpers Form-

ation on the east and the Tomstown Dolomite on the west.

It is mainly nodules and slag-like masses of manganese di-

oxide and iron oxide ().

62.9 Huckleberry Hill HBo 423.64

63.00-63.30 (423.76) OUTCROPS ON BERM Low ledges

of Tomstown Dolomite are on the berm, 80'strn canal, gray face.

423.81 ledge 6 Et dolomc = 50' high, narrow ledge

63.00 (mp): 423.81

63.30 (424.08) OUTCROP ON BERM An 80 ft. ledge is

formed of blocky Tomstown Dolomite with beds up to 2 ft.

thick. 4 joint planes are prominent. The beds strike

N40°E, dip 30°SE and are overturned to the west.

(424.20) Thin-bedded dolomite, beds 5h-1 in. irregular, yellow clayey partings.

Some beds up to 1 ft. thick; strike N50°E; dip 60°SE; dark gray parting beds.

63.31-63.38 OUTCROP ON BERM A ledge, 40 ft.

high, contains gray phyllitic Antietam Sandstone in 4 to 12

inch beds. The strike is N25°E and the dip is 60°SE. The

beds overturned to west.

424.18 - prominent ledge ?

63.40 422.22 TERRACE ON WEST VIRGINIA SHORE The

terrace is part of a low flood plain.

63.53 - informal outcrop - 2.46' bay (Smofm)

Remain 100 ft. long, rough, curved limestone wall on northwest

of terrace, 3-8 ft. high. Another informal outcrop, 200 ft. above this,

1 mile abov2 hill. 2x12" planks along stones forming drum. Torpedos

formerly riprap surface (424.35) (222)
<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.00 (42°47')</td>
<td>OUTCROP ON BERM Low ledge of Harpers</td>
<td>Siliceous siltstone are on the berm. MP 64: Overfall, wall 4 ft. high.</td>
</tr>
<tr>
<td>64.68 (42°49')</td>
<td>CULVERT 96</td>
<td>Constructed 1832-33. The coping and semicircular arch are cut limestone. The arch has a 10 ft. span and 6 ft. rise with 19 ringstones and a keystone in the face. The parapet and coping are 2 ft. high. Abutment: 2 tier, 4 inches high. The spandrels, wings and parapet are coursed rubble of phyllitic sandstone, coarse-grained pebbly sandstone, and blocks of vein quartz. The culvert collapsed in 1839; was rebuilt; collapsed and was rebuilt again. Sink on berm by road, left dramske. Overfall - wall 4 ft. high, 80 paces long in all; 35° north of culvert, 95° south. On berm - same arch, 2 ft. parapet - coping; 9 ft. masonry wall above coping. Wings flared 15°. 4 ft. embankment; 4 ft. recement above culvert. Kissing on wall at right angle to berm.</td>
</tr>
<tr>
<td>64.75-64.84</td>
<td>OUTCROP ON BERM Low ledges along road contain exposures of siliceous siltstone, Harpers Formation. Ledges of similar rock are in the river.</td>
<td></td>
</tr>
<tr>
<td>65.00 (42°57')</td>
<td>CULVERT 97</td>
<td>Constructed 1832-33. The coping and semicircular arch are cut limestone. The arch has a 10 ft. span, 5 ft. rise with 14 ringstones and a key-</td>
</tr>
</tbody>
</table>
stone in the face. The parapet and coping are 1 1/2 ft.
high. The spandrels, wings and parapet are limestone and
blue gray phyllitic sandstone rubble is above the coping on
3 ft. embankment + hill wall.

The spandrels, wings and parapet are limestone and
blue gray phyllitic sandstone rubble is above the coping on
3 ft. embankment + hill wall. Overfall of culvert 97; north and
south end Lsp. to MP 65; culvert 97; 90 paces. 160 paces in all at south.
the towing path side.

Culvert bar in river, 50 ft. diam.

(425.73) = MP 65; 50 ft. west of culvert

65.19-65.45 (426.15-426.40) DARGAN QUARRY The quarry was
apparently opened for stone for the canal in the 1830's and
was used sporadically for lime until the 1930's. A limekiln
Stone kiln ran through World War II; in 8 years, beyond end of war; hammer mill for magnesia "Plant Plant"
(fur Bay House, near Dargan) S Kiln, hydrate built for magnesia; ran until 1929. "Mortle
timber from quarry run woods 2 miles beyond quarry. J. Sutham—same as read.
is at the south end of the quarry, on the berm of the canal. (425.95)

It has 2 arched hearths facing the canal. The brick arches
are 6 ft. wide and 8 ft. high. The kiln is built of blocks
of dolomite and is 36 ft. long and 30 ft. high. There is a
limeshed on the southeast side of the kiln. A similar shed
was formerly in front of the kiln on the berm of the canal.
147 paces; 50 ft. east of kiln, brick wall? on berm.

CAUTION—WHITE HYDRATE OF LIME IN A PILE AT THE SHED IS

CAUSTIC AND CAN HARM EYES AND SKIN.

The quarry is in the Tomstown Dolomite which strikes
Quarry debris in canal, yellow clay partings, prominent transverse joints.

N10°E and dips 45°45'SE. It is gray and highly fractured.

The quarry is divided in two parts by a spur of limestone.

The south part of the quarry is 150 ft. long, 60 ft. deep and 100 ft. wide. The north quarry is 200 ft. long and wide and 80 ft. deep. The two quarries are connected by a tunnel 60 ft. long. An anticline, cut by a fault is in the north quarry where the beds strike N30°E, dip 30°NW on the north limb and 30° to 36°SE on south limb. A second smaller fault is 50 ft. south of the fault cutting the anticline. Several cave openings are in the north quarry. One on a fault has fault gouge in the cavern fill. A large amount of travertine is in the south quarry. Four sets of joints are in the quarries and the rock fractures into angular cone-shaped structures up to 1 ft. in diameter and 4 ft. long.

TERRACE ON BERM SIDE Rounded spurs

with gravel caps are 60 to 80 ft. above the towing path.
level. Houses Falls is in the river. The Potomac Company had a sluice canal 150 ft. long on the West Virginia shore to overcome a drop of 3 ft. at the falls. On W.Va. side: Cut for iron ore for Antietam Furnace.

MP 66.00 (425.75) overflow, revetment 2 ft. high, 65 ft. long.

66.35-66.50 (428.25-428.52)(427.28) OUTCROP ON BERM Four ledges up to 40 ft. high of dense gray Tomato Dolomite with numerous calcite veins and gashes are on the berm. The beds are 4 inches to over 2 ft. thick and are highly fractured. The strike is N20°E and the dip is 37°NNW. A joint strikes N30°W and dips 70°NE.

66.7 (427.45) Load airy dam on berm (Berm) 100+ ft. high; 6 ft. Lim logs with fill of rive, blocks in ash - or may be deck.

66.98 (427.75) LOCK 37 MOUNTAIN LOCK 9 ft. Lift con- structed 1832-33, rebuilt 1843 and 1872. The face is gray dolomite with tan clayey layers 1/4 inch thick alternating with wavy, lensitic, gray layers 1/4 to 3/8 inch thick.

The rock is from a quarry in Maryland 1/2 mile away. Some of the limestone blocks have shallow round lift holes in their faces. A pile of old blocks from the lock are on the towing path. Two of the blocks have cuts for circular

(226)
quoins. A concrete floor is in the upper recess surrounding
the old miter sill; the miter sill has rotted out. A lower
crib extension, now a low pile of rubble, is on the berm be-
low the lock. The flume is on the berm 30 ft. from the
lock and has a concrete culvert 6 ft. wide x 5 ft. high
with an insert board waste weir at the head. The slot for
the boards is 12 inches wide x 4 inches deep. The flume is
4-6 ft. deep, 10 ft. wide and lined with limestone rubble.
Bassin at head of lock - 100 ft. long.

The lockhouse is on the berm and was constructed in 1836-37.

It is brick, 1 1/2 stories high. Sinkholes have caused
subsidence in the canal in the vicinity of the lock.

Culvert 100 Construction 1832-33. The
coping and semicircular arch are cut, dark gray limestone.

The arch has an 8 ft. span and a 4 ft. rise and there are
14 ringstones and a keystone in the face. The abutment is
4 ft. high. The parapet and coping are 3 ft. high. The

Arcuate wings - same on berm - timbers also exposed on berm. Left embankment on
berm is revetted. - revetment on berm side of canal at culvert left revetted embankmentabes coping on t.p.
spandrels and parapet are dark gray limestone rubble. 10 x

(227)
10 inch foundation timbers, spaced 10 inches apart and transverse to the axis of the culvert are exposed on the river side and throughout the culvert. The culvert was destroyed in the flood of 1889 and rebuilt in 1891.

67.14 (435.05) **WASTE WEIR** This is a standard concrete frame with 3 gates and insert boards. A low wall of coursed limestone and sandstone rubble are at the toe of the spillway.

No paddle gate in waste weir.

100 ft. embankment to 67.37.

67.20 - Mountain Lock. 1880 - Recreation area, begins on west side of waste weir.

67.34 (435.78) - Slabby quartzitic phyllite, bands parallel to canal; sandstone rubble are at the toe of the spillway.

OUTCROP ON BERM Four ledges, up to 50 ft. high, contain massive to slabby Tomstown Dolomite.

The strike of the beds in the third ledge is N40°E and the dip is 55°NW. The strike in the western ledge is N30°E and the dip is 20°SE. A spring is in the canal bed at the base of the second ledge. Small column opening 1ft. w. 2ft. h. at (435.75)

OUTCROP ON BERM A bluff 60 ft. high contains dark gray, slabby Tomstown Dolomite. The strike is 310° x dip 80°NE.
isN10°E. and the dip is 72°E. Small solution cavities are
in the dolomite along a prominent bedding plane, 10-30 ft. above canal.
Fracture N46°E. dip 45° on west end of outcrop - pseudo anticline.
68.12 (436.18) Site of culvert no 101 - not seen - 40 ft long, rock-filled quay on top side.
68.22 (447.86) OUTCROP ON BERM A low ledge contains Toms-town Dolomite. Large spring at base, stream from spring sinks in canal & 40 ft.
Small similar outcrops in undisturbed ledge, 4 ft. wide. Edge 1 ft. high, badly limeted.
5
68.50 (434.45) & (436.56) SHAPELESS' LANDING (BRIENS FERRY) The
(444.85) pile of limestone waste on the berm served as a loading
ramp for limestone and lime from Wades quarry and the lime-
kiln at the old furnace at Antietam in the early 1900's.

Culvert 101, a road culvert at this site, constructed in
1833, collapsed 1837 and a bank was placed over it.
(Berm in embankment to Antietam Aqueduct.)
1837. (436.59) Berrn Brushed, stream crvice
(436.71) point for bridge (Wades)
68.85 (444.70) SHAPPERS LANDING This is the site of

a pivot bridge across the canal erected by the Antietam Iron
Works after the collapse of culvert 101. Knots Island - quarry in limestone

OPPOSITE LANDING.
MP 69 (436.90/444.55)
69.34 BRIENS BASIN was formerly on the berm just
below the Antietam Aqueduct. This inlet masonry is parti-

Old masonry on berm; 10 ft.
(437.15) Antietam Pic. Area
(437.2r) Basin 100 '2' 100' sloping banks.
(229)
wharf area for the Antietam Iron Works. The stack of the
old furnace, later converted to a 3 stack limekiln, and old
brick buildings are intact at Antietam 1,000 ft. east of
the aqueduct. The first furnace, erected in 1765, made
cannon balls for the revolution and parts for Rumsey's
steamboat in 1786. The second furnace was built in 1845
and rebuilt after the Civil War. Its 50 x 11 ft. stone
stack had a capacity of 100 tons per week and was operated
until 1883. A forge and nail factory operated from 1831 to
1853. Much of the plant was dismantled in 1891 and the
stack was converted to a limekiln with 2 additional kilns
built on the east side of the furnace.

ANTIETAM (NO. 4) AQUEDUCT

Constructed 1832-35, cost $25,022.49 including railing. The aqueduct is 108
ft. long between abutments and has three elliptical arches.
The two side arches each have a 28 ft. span and 10 ft. rise.
30 ringstones and a keystone are in the face of each. The

(230)
center arch has a 40 ft. span and 10 ft. rise with 38 ring-stones and a keystone in the face. The piers are 6 ft. thick. The parapet and coping are 7 ft. high. The coping is 26 ft. above the foundation and 23 1/2 ft. above the stream. The towing path parapet is 6 ft. wide at the top and 7 ft. at the bottom. The waterway is 22 ft. wide at the top and 20 ft. at the bottom. Pilasters 4 ft. wide project 21 inches at the base and 15 inches at top at each pier. The foundation pads are rubble capped by rounded arrises 3 ft. 8 inches high at the base of the piers. The flared wings are at each pier are 46 ft. long and 7 1/2 ft. thick. The Aqueduct is constructed of gray, wavy-banded Tomstown Dolomite from a quarry 3/4 mile to the east. Blocks are cut on the bed and joints but faces are rough. The water table and belt are cut stone. The parapet and wings are coursed scabbled stone. One repair block of granite is in the coping on the towing path side. The
wings on the west contain sandstone rubble. One block of Seneca red sandstone is in the lower end of the waterway. Crenulated bedding and other slump features show well on the weathered faces of the dolomite blocks. Solution marks resembling bird foot impressions are prominent on some of the faces on the limestone block. Some blocks in the coping are crumbling along bedding planes and fractures. In the 1900's a timber crib was placed on the upstream side of the east pier for support and protection. A road formerly passed under the aqueduct. The aqueduct was breached in 1859 and extensive repairs were required. On July 21, 1864 the Confederates blasted down the berm side to the arches and the ringstones were torn out. The towing path side was blasted down two-thirds of the face and a 20 ft. section of the center arch was destroyed. The aqueduct was rebuilt in 1864 and vertical iron rods were installed for support. The aqueduct was restored by the National Park Service in
CULVERT 103 Constructed 1832-33. The coping and semicircular arch are cut limestone. The arch has a ½ ft. span and a 2 ft. rise with 10 ringstones and a large prominent keystone in the face. The parapet and coping are 1 1/2 ft. high. The spandrels, parapet and wings are limestone rubble. There is a 2 ft. drop at the front of the pavement on the riverside. From this point to Shepherdstown there are embankment on the berm.

CULVERT 104 MILLERS BASIN Constructed 1832-33. The coping and semicircular arch are cut gray limestone. The arch has a span of ½ ft. and a rise of 2 ft., with 16 ringstones and a keystone in the face. The abutment is 5 ft. high on the towing path side. The springing line is at stream level on the berm. The parapet and coping are 3 ft. high. The spandrels and parapet are coursed limestone rubble. Water from sawmill from canal.
A basin served the sawmill and limekilns of Jacob Miller.
The basin and limekilns were built in 1846. The sawmill was erected in 1864.

The Elbrook Limestone is exposed at the base of the culvert and it also forms a bluff in back of the house on the hill to the northwest. In the bluff a syncline on the east has beds that strike N5°W and dip 50°W. The west limb forms east side of anticline with beds that strike N20°W and dip 22°ENE. The limestone is irregularly banded, wavy, light gray with laminated beds. The beds are 1 inch to 2 ft. thick. Prominent joints strike N25°E, vertical, 4 ft. spacing; N10°W, dip 80°W; N35°E, vertical; N70°W, vertical; N55°W, vertical. The joint surfaces show "bird-foot" pitting on the weathered faces. At the peak of the anticline are beds of massive dark gray Elbrook Limestone with joints with plumose surfaces. The west limb of the anticline strikes N20°E and dips 25° to 40°WNW. There are no joints.
but numerous closely-spaced fractures are present. The upper beds above the prominent ledge have several changes in dip because of small folds. Ledges in the river, exposed at low water, dip steeply to the east and the direction of the ledges is offset upstream at the center of the river by a change in strike and dip.

Upper beds above the prominent ledge have several changes in dip because of small folds. Ledges in the river, exposed at low water, dip steeply to the east and the direction of the ledges is offset upstream at the center of the river by a change in strike and dip.

71.58 (439.46) **CULVERT 105** Constructed 1833. The coping and semicircular arch are cut limestone. The span of the arch is 4 ft.; the rise is 2 ft. The parapet and coping are 3 ft. high. The culvert is filled to the top of the arch with silt and debris (1971).

Vertical cement kilns are 350 ft. north of the canal. 1 kiln in front is facing the canal and 2 are on the west side covered by a barn. The arches over the hearths of the kilns are brick and the faces above the hearths are limestone. The kilns

Pile of stone of crushed dump along road to 439.70.

(235)
were built in 1888 by William H. Blackford and had a capacity of 300 barrels per day. They were operated until 1903. The limestone for the manufacture of the cement was from a quarry in the Elbrook Formation behind the kilns. (Mathews and Grasty, 1910). The kilns back against a terrace of tan silty sand with water-worn cobbles up to 6 inch size.

Similar old kilns are on the West Virginia side of the river at the old Botelers and Reynolds cement mill. Boteler's mill originally ground flour but was converted to grinding cement and the kilns were erected in 1828. Botelers and Reynolds mill supplied most of the cement used in the canal up to 1834. The mill was burnt by Federal troops in 1861.

A low dam formerly crossed the river at this point but only the masonry abutments remain and a riffle in the river indicates the location of the structure. The dam was built
by Dr. Henry Boteler in 1822 for power for his mill. The dam was a timber crib 3 ft. high and made of timbers set on a crib base. It was used to transport logs and support the crib work. By 1873, the dam had been destroyed by the flood of that year.

Packhorse Ford, also known as Blacksfords and Boteler's Ford, crossed the river here. An old game trail was adapted as a ford in 1736 and used until 1755 when a ferry was established at Shepherdstown. The Confederate army in the Antietam Campaign of September 1862 used this ford.

Norfolk and Western Railroad Bridge

This bridge was constructed 1908-09 by McClintic-Marshall Corporation of Pittsburgh, Pa., as a replacement for an older bridge 500 ft. upstream. The concrete piers and steel trestle towers support a single track, 5 span, steel deck.
Pratt truss over the river and 7 plate girder deck trestle spans on the north. 1 deck plate girder span is on the south approach. The bridge carries traffic of the Shenandoah Valley Branch, Norfolk and Western Railroad, between Hagerstown, Maryland and Roanoke, Virginia. An old canal wharf is on the berm west of the bridge.

Rounded hills 35 to 100 ft. above the canal to the north are terraces with well-rounded sandstone and conglomerate boulders up to 2 ft. size in tan silty sand. Rounded cobbles up to 8-inch size are common.

72.64 (44.51) SHEPHERDSTOWN INLET LOCK Constructed Bridge piers 50 ft. to east. 1833-35. The facing is hammer-dressed limestone. The circular quoins at the river end of lock are well preserved. The river end of the lock is now open and the canal end is blocked by a wall of limestone rubble and earth fill that serve as part of the towing path. Abutments of the old pin lock dropped down to runoff from canal.
towing path bridge are at the upper circular quoins and
wings at the entry to the canal. The lock was abandoned
in 1889 after the flood washed out Botelers dam that formed
the pool on the river side of the lock.

Piers of the old bridge of the Shenandoah Valley Rail-
road (now Norfolk and Western Railroad) are on the east
side of the inlet lock. They were constructed in 1880.

They are 20 ft. wide, 15 ft. thick at canal level and 20 ft.
x 10 ft. at road level. They are 50 ft. high and are built
of wavy-banded, gray, rough-faced limestone blocks, 18
inches thick, up to 4 ft. long and 3 ft. wide. Iron braces
5 ft. apart are in the upper half of piers. Vertical L
beams at the top of the piers supported a deck between
the trusses. 5 piers carried a 5-span, steel deck Pratt
trusses with curved lower chords over the river. A 5-span
plate deck girder bridge with trestle supported by 4 towers
was on the north approach. The bridge was dismantled in

(239)
The monument on the south side of the river at the top of the bluff is a memorial to James Rumsey, inventor of the steam boat. The first trial trip of his boat was at Shepherdstown in October 1783. The boat was rebuilt and a trial trip at Harpers Ferry was made in March 1786. It was demonstrated at Shepherdstown on December 3 and 11, 1787. Rumsey was an engineer with the Potomac Improvement Company engaged in making Potomac and Shenandoah Rivers navigable.

72.80 (440.70) LOCK 38 SHEPHERDS LOCK 5 ft. lift,
stone walls, bridge abutment to flume culvert on berm,
constructed 1832-33. The face is hammer-dressed, gray and black Conococheague limestone quarried directly opposite the lock on the West Virginia side of the river. The limestone rubble walls on the berm side of the lock extend to an old basin above the lock. The lock had a lower extension timber and berm on north side of mound still in place.
and low embankment on the berm below the lock is a remnant.
of cribs. The flume was on the berm and was 5 ft. wide, 4 ft. deep, lined with limestone rubble. The culvert at the lower end of flume is a semicircular arch with a 5 ft. span and a 2 1/2 ft. rise. It is faced with cut limestone.

The lockhouse was built in 1837-38 and was a brick structure, 2 stories high. It was on the towing path but was carried away in the flood of 1936. The limestone abutments 150 ft. east of the lock formerly carried a timber highway bridge over the canal. The original pivot bridge at this point was built in 1834-36 to connect with Blackfords (Thomas Swearingens) Ferry which was operated across Potomac from 1755 to 1850. It was burnt by Confederate troops in July 1864. A new pivot bridge was built in 1866 and a fixed pony (open) timber truss was constructed in 1884. A revetment wall is along the towing path for 150 ft. below the bridge site. The wall on the berm below the bridge abutment is flared and is 30 ft. long.
A timber, covered bridge was built across the Potomac in 1849-50 by the Virginia and Maryland Bridge Company. It had 4 spans on the 3 piers. The limestone for the piers was quarried near Botelers and Reynolds Cement mill. The bridge cost $37,069.85 and was burnt by the Confederates in 1861. A new, covered, timber bridge was erected in 1871. One span on the West Virginia side was carried away in the flood of November 1877. It was rebuilt but the entire superstructure was carried away in the flood of 1889. It was replaced in 1890 with a through Pratt truss bridge of 4 spans on the original piers with raised coping by the King Iron Bridge Company of Cleveland, Ohio. It was remodeled in 1924 by the Atlantic Bridge Company and heavier floor placed on it. The bridge was purchased by the State of West Virginia in 1929. The entire bridge was carried away in the flood on March 18, 1936 (Welshans, 1937) and only the piers remain in the river. 300 ft.
downstream from present highway bridge. A ferry was reestablished until a new bridge was constructed by the Maryland State Roads Commission. The new bridge is a 6-span, Whickett type, continuous deck steel truss. It is 1,021 ft. long, 72 ft. above low water level and was opened July 15, 1939. It cost $250,000.

Shepherdstown, on the West Virginia side of the river, was founded in 1727 as New Mecklenberg. Thomas Shepherd incorporated the town in 1762 and the name was changed to Shepherdstown in 1798.

72.86 (440.73), 0.03 mi. west, bridge - informed overflow, 68.0 ft. long. No apparent support.

73.00 (471.28) TERRACE ON BERM Rounded hills are covered with sandy silt containing rounded cobbles. Low, irregular outcrops of Conococheague limestone are in small ledges on the side of the hill. Ferry Hill Plantation on hill on berm built early 1800s, NPS - C&O.C.N.H.

73.17 (471.02) OUTCROP ON BERM An 80 ft. bluff is formed of thick massive beds of dark gray Conococheague Lime-

[Sketch of outcrop not made]
stone. A 10 ft. zone of beds 1 inch thick are in the middle part of the outcrop. The strike is N10°E and the dip is 35°ESE. Joints strike N55°W, dip 84°NE; N50°E, vertical; N30°E, dip 70°SE. Small caves are at the center and north end of outcrop, 20 ft. above canal. The north cave opening is 3 ft. high x 2 ft. wide.

73.26 OUTCROP ON BERM An 80 ft. cliff of Conococheague Limestone is on the berm. The beds are massive except at the northeast end of the outcrop where beds are 4 to 6 inches thick. The strike is N5°E and the dip is 30°2. Flat, weathered surfaces show angular breccia fragments 3 to 6 inches in size.

73.29 Two small caves, 20 ft. above canal; top one 4 ft. high x 2 ft. wide; strike of roof N20°E, dip 35°NW (upstream).

73.46 470.72 CULVERT 107 Constructed 1832-34. The coping and arch are cut limestone. The arch has a 6 ft. span and a 3 ft. rise. 6 ringstones and a keystone show in the face of the arch. The parapet and coping are 10 ft. high. 10 ft. wall above arch to coping; coping at town line; 6 windows in parapet.

421.15 - 471.11 Limestone, 3 beds up to 200 ft. high; 4 to 6 in. beds. Joints strike N55°W, dip 84°NE; N50°E, vertical; N30°E, dip 70°SE. Small caves are at the center and north end of outcrop, 20 ft. above canal. The north cave opening is 3 ft. high x 2 ft. wide.
The parapet is coursed limestone rubble. The culvert is filled to the top of the arch with sediment (1971). Some on berm. No wings on berm.

73.57 - OUTCROP ON BERM A cliff 100 ft. high, 300 ft. long, is formed of Conococheague Limestone. Beds are 2 to 6 inches thick and strike N30°E, dip 80°SE. Some paving on towing path ends 100 yards below Lock 39. Bluff at 472.52' 135°Ft. high, bluff at 472.55' 150°Ft. high, has 1-6 in. thick:

73.70 - LOCK 39 (Mitchells Lock) 6 ft. lift, completed 1832-34. The face of the lock is hammer-dressed Conococheague Limestone quarried in Virginia near Sheperdstown. The stones are up to 6 ft. long, 3 1/2 ft. wide, 1 to 1 1/2 ft. thick. Two types of limestone are in the lock. One has a rough surface, irregular bedding, with black chert lenses up to 4 inches long x 3/4 inch wide, and rectangular breccia fragments 1 to 6 inches in size. This is best seen in the revetment at northwest end of lock. The other type of limestone is fine grained, regular, thin bedding, smooth surfaced, cut by dense gray, very thin, irregular joints, post on towing path at lower end of lock; flume on berm.
regular calcite veinlets. In the lower four tiers below the old water line, flat surfaces contain "bird-foot" solution marks up to 1/4 inch deep. Solution ribs on limestone protrude 1/4 inch. The miter sill is intact in the upper recess, but only bolts remain in the lower miter sill. The

flume is 20 ft. on the berm and has a concrete waste gate at the head. The gate is 3 ft. wide x 3 ft. high, with flume 6 ft. wide; concrete wings, 15 ft. dis. slots for insert boards. A 20 ft. mound on the berm upper end of the lock is the remains of a fender crib. A snubbing post is on towing path at the lower end of the lock. The brick foundation for the lockhouse is on berm at upper end of lock. It was constructed in 1836-37.

Stone pile lower end of lock - 20 ft. long mound, 4 ft. high on dam end of lock, end of berm wings separate flume drawing.

74.05 CULVERT 108 100 ft. upstream from the lock, constructed 1833. The semicircular arch has a 6 ft. span (incl. skewback) on downstream side of towpath arch; bermstone, no skewback on upstream side; 3 ft. rise. 12 ringstones and a key-stone; abutments 4 ft. 2 in. parapet = coping = 2 ft.; drop = 0.3 ft. All masonry corr. stone are in the face. The abutment is 3 ft. high. The parapet and coping are 2 ft. high. A 5 ft. drop is at the lock.
river side end of the pavement. The ringstones and coping cut limestone; the rest of the culvert is coursed limestone rubble. Limestone crops out on the berm side of the culvert and the beds strike N19°E and dip 45° WNW.

Discontinuous masonry on culvert 470.10 to breach weir 74.07 470.75 WASTE WEIR This is a concrete frame, board insert waste. The base and wings are limestone rubble. The original overfall at this site was constructed.

1833. No padeyes.

1833/12 Time post or time marker - originally 6 ft. high; 3 ft. high, could be stub of telegraph pole.

x 74.15 Dig slope wall, riverside approach upstream for 0.5 min. 50 sec. checked thoroughly.

x 74.12 Section deck and building foundations = company house

74.24 469.44 CULVERT-109 Constructed 1833. The irregular arch is cut gray, orange stained, limestone and sandy limestone. It has a 6 ft. span, and 4 ft. rise. A large embankment 3 ft. above coping. Berm face battered, 1 ft. in left. Rest of embankment is true path.

No wings on true path side. cant explosive gives additional rise a 12 ringstones and a keystone are in the face. The abutment is 3 ft. high.

The parapet and coping are also 3 ft. high. The coping is cut gray limestone and the abutments are red sandstone.

The spandrels, wings and parapet are coursed limestone rubble. Some gray sandstone and gray brown quartzite are
in the abutments and spandrels. The pavement is concrete and stone. The inner ring courses limestone rubble. There is a 4 ft. drop at the mouth of the culvert. A 2 1/2 story section house 18 ft. by 33 ft. is at the upper end of the stone wall which extends along the berm. 300 ft. west of the culvert on the river side is a small pumping station for Sharpsburg water supply (74.30).

74.26 - Pumping plant, Sharpsburg water 100 sq. ft. rivers edge
74.27-75.00 terrace of limestone; low ledge 100 yd. from brink; face of ledge rounded.

74.27-75.00 TERRACE ON BERM The front of the terrace is at canal level and the terrace rises gently to the base of the limestone hill, 100 to 300 ft. from canal.

74.50-75.50 This section of canal had frequent breaks because of fissures and sinkholes in the limestone beneath the flood plain and terraces.

75.63 468.84 OUTCROP ON BERM A bluff 70 ft. long and 100 ft. high is formed of gray, massive Conococheague
Limestone. The beds strike N20°E and the dip is vertical.

Fracture cleavage shows as steps 1 to 4 inches apart on the limestone faces. The limestone breaks into irregular slabs, 1/2 to 1 inch thick, on weathered surfaces. Two small cave openings are at canal level (Sharpsburg Shelter Caves). The west one (downstream) is 5 ft. high, 2 ft. wide leading 20 ft. to a small crawlway 20 ft. long. A small solution tube is above this cave. The east cave (upstream) is a 20 ft. depression low ledge of limestone along bluff to Killiansburg Cave. Passage to a small dome pit, 8 ft. in diameter. Beyond the dome pit a crawlway trends west connecting with the downstream cave; beyond the junction are narrow crawlways and fissures extending south for 100 ft. (Franz & Slifer 1971, p. 99-100). A fracture pattern, 1 1/2 x 1 ft. spacing is etched on the walls of the cave.

KILLIANSBURG CAVE Two large cave openings are in the bluff. The one at canal level has a flowstone bench, 3 ft. above a floor of clay. Flowstone is on [sketch map]
the walls. A small spring issues below the clay floor. The
cave entrance is 10 ft. high and 10 ft. wide reducing to a
small crawlway 20 ft. in. The limestone beds are cut by
closely spaced fractures at right angles to the beds. Joints
strike N65°W, vertical; N70°W, dip 80°S; N60°E, dip 55°SE;
N35°W, dip 80°SW.

A second cave is 40 ft. above the canal level. The
entrance is 20 ft. wide and 18 ft. high. A large, triangular-
shaped, passage extends 40 ft. but narrows and lowers to 4
ft. high. Joints are similar to those in the lower cave; an
additional joint strikes N5°W with a vertical dip. The
limestone at the front of the caves has ribs etched out by
solution. The ribs are vertical and spaced 2 to 4 inches.
The caves are in the Conococheague Limestone which strikes
N25°E and dips 35°NW. The axis of the caves are along the
strike.
75 ft. east (upstream) is a cave opening 4 x 4 ft. in size, 30 ft. above canal. The rock is stained orange from the silt fill of the cave.

Killiansburg cave was used as a refuge for inhabitants of Hagerstown during the Civil War in 1863.

75.78 Reeminent wall on rampart; long straightway.

75.80 468.40 CAVE ON BERM A small, low cave opening; prominent wall on top.

8 ft. wide, 2 ft. high, is in a ledge 20 ft. above the canal.

300 ft. east (upstream) two solution openings are in a ledge. They are 1 to 2 ft. in diameter. Conococheague limestone forms the ledges with beds 2 to 6 inches thick striking N 35° E and dipping 35° to 45° NW.

468.30 Two caves, 50' x 60' above the canal; 10' wide, 4.5' high 200 ft. south of small opening.

75.90 468.29 SMALL SOLUTION OPENING In a ledge on the berm, 45 ft. of canal is a solution opening 3 ft. wide and high. Soil and debris are spewed out below the opening.

The second opening is 30 ft. above the canal, 200 ft. to the east (upstream). Strike of beds N 30° E; dip 40° upstream, vertical joint trends 140°. Beds up to 4 ft. thick. Discontinuous outcrops to west.
75.95-76.10 OUTCROPS ON BERM Discontinuous ledges of massive Conococheague Limestone are on the berm.

76.10 TEMP - Small cave, 4 ft. diam., 30 ft. above canal.

76.11 TEMP - 468.20 468.10 - Upper end of well.

76.17 CAVE ON BERM The entrance, 3 ft. wide and 4 ft. high, is in a ledge. At 6 ft. in the passage drops 5 ft. to a narrow walkway 125 ft. long. The trend of the cave follows the strike of the rock beds. The Conococheague Limestone is highly fractured and strike N 35° E with a vertical dip. Joints strike N 60° W, dip 60° S,

N 40° E, dip 45° NW; N 85° W, dip 45° N; N 70° W, dip 60° NE.

467.80 - 467.90 Limestone, beds of massive, strike N 40° E, dip vertical.

467.80 - 468.05 - Movement well along toppath.

467.80 - 468.00 Large boulders at mouth of stream.

76.58 467.60 CULVERT III Constructed 1833. The coping and semicircular arch are cut limestone. The arch has an 8 ft. span and 4 ft. rise with 6 ringstones on the north, 5 on the south, and a keystone. The abutment is 7 ft. high.

The lower 5 ft. of the abutment is concrete. The parapet and coping are 3 ft. high. The spandrels and parapet are mainly of limestone with some sandstone. 3 ft. of dark Limestone outcrops on berm in stream.

Large boulders at mouth of stream on Parapet above coping.

Bed of limestone on top path side.

(252) 76.5 - Stonewall, Chaplin Stone Warehouse. (not seen)
gray to black organic sandy silt is on the flood plain. It is exposed in the ravine downstream from the culvert.

On berm, dark gray, wavy bedded limestone, strike of beds N 40° E, trend N. Vertical joints in limestone 310° and 340°

76.65 SHARPSBURG (Snyders) LANDING An old section house is in ruins on the berm. It was formerly a frame structure, 2 stories high. A foot bridge is at the site of the old swing bridge. The concrete abutment of the swing bridge is on the berm with 2 ring bolts. A concrete pier 10 ft. out from berm and a similar pier and abutment are on the towing path side of the canal. Snyder Coal and Grain Warehouse was formerly on the berm. It was washed out in 1936. Sinkholes in the limestone gave considerable trouble in this section of the canal.

76.66 Footbridge – gone in 1975.

76.69 467.48 OLD OVERFALL The limestone revetment on extends 47'4' to south, crossing three ravines.

76.87 467.38 Service Bridge, Snyders Landing boat launch, toilet (1973) the towing path is the site of an old overfall, 18' wide.

76.75 CULVERT SITE The limestone revetment and boulders of sandstone are at the site of a former culvert.
CULVERT 112 Original culvert built 1834

The parapet is coursed limestone rubble on the towing path side. The rest of the culvert is buried. A 2 1/2 ft. vertical sewer pipe on the berm curves to a horizontal pipe beneath canal and carries the present drainage.

8 ft. high; no wings; sewer pipe (ceramic) below parapet.

A V-shaped barrage is in the river. (seen in 1875)

A 6 ft. lift is apparent at the gate.

Gray Conococheague Limestone is in the berm walls. The lower 3 tiers are smooth-faced; tiers 4 to 7 from bottom are rough hammer dressed and the top 2 tiers are smooth faced. The smooth-faced limestone is dark gray, wavy banded. The hammer-dressed stone is light gray and fine grained. The wall on the towing path side is all smooth faced. The circular quoins have 1/4-inch deep solution rills. The
The limestone is from a quarry on the Potomac River, West Virginia side about 1/2 mile from the lock. The lock was partially rebuilt after it collapsed into a sinkhole. A wooden stop gate and earthen embankment now blocks off the upper end of the lock. The flume on the berm is 20 ft. from the lock. A concrete waste weir is at the head of the flume and is a single gate 4 ft. wide and 6 ft. high with insert boards. The mound at the upper end on the berm side is probably the remnant of a fender crib.

Large river cobbles & boulders, up to 3 ft. size, in flume below cemented area.

The lockhouse on the berm. It was built in 1836-37 and only the stone foundation remains. The meadow on the berm is a terrace rising inland from the canal level to 40 ft. above the canal. Another terrace is 80 ft. above the canal. Rounded sandstone boulders from the terraces are in the floor of the lock chamber.

79.59 WASTE WEIR A concrete frame waste, 12
ft. wide, has openings each 3 ft. wide with insert boards. Some boards, 2 inches thick, 6 inches wide remain in the slots. A limestone revetment is on the river side of the spillway. The original overfall at this site was constructed in 1835. A terrace on the berm is at towing path level. "Revetto Wall on Towpath" This probably the site of an old overfall or culvert. Large gully to rural, 42' pace log; wally cattle and limestone rivets.

1833. The coping and semicircular arch is cut limestone. The arch has a 4 ft. span and a 2 ft. rise. 8 ringstones and a keystone are in the face. The abutments are 2 ft. high. The parapet and coping are 2 1/2 ft. high. The spandrels, parapet and wing wall on the west (downstream) are coursed limestone rubble. A ledge of Conococheague Limestone is at the base of the culvert on the towing path side. The limestone is black, dense to fine grained with Outcrop in stream on trim also.
wavy bands of orange clayey limestone 1/4 inch thick, spaced 1 to 2 inches. The beds strike N20°E and the dip is vertical.

MP 80 - 300.05

OUTCROP ON BERM A 30-ft. ledge of massive, dark gray, finely crystalline Conococheague Limestone is on the berm. Calcite veins 2 inches thick are parallel to the beds. Rills to a depth of 1/16 inch are on the surface of the limestone. The beds strike N10°E and dip 35°ESE. Joints strike E-W and the dip is vertical. Cleavage which strikes N27°E and dips 52°ESE, appears as false bedding. Fractures strike N80°W and dips 45°S.

MP 464.05 - Limestone revetment, slipping up to 10 ft., covered by surfacing material.
464.05 - Large void, 10 ft. in diameter, plugged; wall 33 ft. long

OUTCROP ON BERM

Conococheague Limestone in ledges up to 120 ft. high is exposed on the berm. The strike is N35°E and the dip is 80°SE at the north and 45°S at the south.

MP 463.95 - 464.00 Rock truncated 1-1/2 ft. high; denuded surface.

OUTCROP ON BERM

Conococheague Limestone
is in a cliff with the vertical face parallel to the canal.

The strike is N10°E and the dip is vertical.

80.45 463.72 CULVERT 115 MONDELL Constructed 1832-
Stone wall 4 ft. long at Stone House on berm.

33. The coping and semicircular arch is cut limestone.

The arch has a 6 ft. span and a 3 ft. rise. 10 ringstones
on bum. Ringstone (including shortened) + Keystone
and a keystone are in the face. The abutment is 3 ft. high.

The parapet and coping are 3 1/2 ft. high. Spandrels and
parapet are coursed limestone rubble. An 8 ft. dry wall of
limestone is above the coping. A ledge of Conococheague
Limestone is at the base of the culvert on the towing path
side. The strike is N35°E and the dip is vertical. Tan
colored travertine, in a bed 1 to 2 ft. thick, sloping 10°
towards river, is on top of the bank on the towing path
side. Walls of the old Harris warehouse are at the bend in
the the road on the berm. It is made of coursed Conoco-
Cheague Limestone rubble. No wings.
TAYLORS LANDING (Mercersville) A revetment of limestone is on the berm. An outcrop of Conococheague Limestone is at the east end of the revetment.

West of Taylors Landing there are low terraces on the berm 15 to 20 and 45 to 50 ft. above the canal. Extensive limestone karren ledges are on the hill behind the terraces.

CULVERT 116 MARSH RUN MIDDLEKAUFFS BASIN

Constructed 1832-34. The coping and semicircular arch is cut limestone. The arch has a span of 10 ft. with a 5 ft. rise. 14 ringstones and a keystone are on the river side.

16 ringstones and a keystone are on the berm. The abutment is 6 ft. high on the river side and 4 ft. high on the berm. The parapet and coping are 4 ft. high on the river side and 12 ft. high on the berm. A 6 ft. embankment above coping is on the river side. Limestone wing walls on the berm are 36 ft. long on the east and 48 ft. on the west.
The spandrels, parapet and wing walls are coursed limestone rubble. Conococheague Limestone crops out on the creek north of the road. The strike is N5°E and the dip is 35°E.

81.91 462.40 SPRING A timber-cribbed revetment on the river side of the towing path, 20 ft. high holds the embankment above a large spring. 2ft. wide x 6" deep x 2ft/loc (June, 1973) Parity would not tunnel under fall below.

82.00 461.87 MP 82 CLIFFS ON WEST VIRGINIA SIDE OF RIVER

The Conococheague Limestone forms continuous cliffs along Whiting's Neck.

82.46 461.18 Big woods H.B.O.

82.20 461.18 (461.18) TERRACE ON BERM A broad gently sloping meadow at canal level is strewn with gravel.

83.13 OUTCROP ON BERM The Conococheague Limestone forms a ledge. The strike is N5°E and the dip is 45°E. Discontinuous outcrops are to the west.
the berm in a low ledge of Conococheague Limestone. The strike is N10°E and the dip is 55°E. The limestone is dense, gray and cut by cleavage striking N60°W and dipping 65°-70°SW. The cleavage forms plates 1/2 to 2 inches thick. Joints strike N10°E, dip 45°W; N80°W, vertical. The cave entrance is 15 ft. wide and 20 ft. high with a passage of similar dimensions extending north for 100 ft. The floor rises gently and small stream is on the floor. At 100 ft. the cave is offset to the east end and the passage is 4 ft. wide and 4 to 6 ft. high for 40 ft. to the north after which it gradually reduces to a crawlway with a pool. A side, fissure passage on the east of the main passage connects with the domepits 30 ft. high (Davies 1961, p 39-41; Franz & Slifer 1971, p.74-75).

CAUTION- THE CAVE EXTENDS INTO THE ZONE OF TOTAL DARKNESS; LIGHTS ARE NECESSARY BEYOND THE FIRST FIFTY FEET;
460.48 Outcrop, ledge 100 ft. high, beds strike N10°E, dip 45° down anum; beds 2-6 in.

The floor is slippery. Do not break or remove stalactites.

Look, photograph, but leave them for others to enjoy.

83.5 Outcrop on bluff 117 - 1st seen (1975)

83.62 460.20 - 460.16 Outcrop on berm The Conococheague Limestone forms a ledge 30 ft. high. The beds strike N25°E and dip 80°E to vertical at east end and 70°E at west end. Beds 6 in. to 1 ft. thick.

83.74 460.10 Outcrop on berm A 40 ft. ledge of Conococheague Limestone is on the berm. The beds dip 70°E on the east. These beds are faulted against beds dipping 45°E on the west. The limestone is highly cleaved along the fault. A solution opening 2 ft. wide x 4 ft. high is on the east side of the ledge. Discontinuous outcrops extending upstream from the fault, dip 45°E.

Diagram: bluff with fault
5" x 3" original; 2" x 2" reproduction

83.77 460.05 Outcrop on berm A low bluff of Conococheague massive limestone has small solution openings

Limestone is mainly massive; strike 8-E., beds N10°E; dip 42°E. (downstream), 60° at lower end of outcrop.

(262)
filled with orange brown silt.

83.88 459.92 - Small stream and storm sewer; small stream on Berm 10 ft. long, of storm water (waste) on Berm.

83.89 459.90 **OUTCROP ON BERM** Conococheague Limestone is in a ledge 80 ft. high. The beds strike N20°E and dip 46° to 70°E on the east side. An anticline is at the base of the west end of the ledge. The east limb dips 46° E; the west limb dips 80° W. A prominent crack, sloping to the west, cuts the center of the ledge. sketched

DIAGRAM, structure in bluff- 5" x 10" original final 2" x 4".

83.95 **OLD QUARRY ON BERM** The Conococheague Limestone, with massive beds up to 10 ft. thick are on the west side of a ravine. They strike N25°E and dip 45°E. A quarry is on the east side of the ravine with a 50 ft. front along the canal. The quarry extends north 75 ft. The beds in the quarry dip 80° to 85°E at the top and are vertical at the base. 200 ft. long, 50 ft. wide (quarry); prominent ribs of clays in downstream side of quarry

83.96 **CULVERT 118** Constructed 1833-34. The
Small quarry of limestone on berm.

coping and semicircular arch are cut limestone. The arch has a 6 ft. span and a 3 ft. rise. 10 ringstones and a large keystone, 14 inches wide at the base, 22 inches wide at top, are in the face. The parapet and coping are 4 ft. high. The spandrels and parapet are rubble limestone. A 3 ft. dry wall is above the coping. The culvert is partially closed by silt (1971).

84.21-84.40 459.62 DISCONTINUOUS OUTCROPS ON BERM

Conococheague Limestone, in beds 1 to 3 ft. thick are in low bluffs. The beds strike N15°E and dip 47°E.

459.55 (where roads come in) Limestone and cottle revetment wall on top.

downstream of rock weir

84.37 WASTE WEIR This is a concrete frame with 3 gates for insert boards. The frames are broken out

New width reduced (1971) (1971). This is the site of an overfall constructed in
gutter in discharge area of weir, striking N15°E to road, river, dip 60° downstream to opal on east side

1835. Road has no gate on dam; open bridge. The date of Dec. 1921 on concrete w.w.

400-horse wall and opposite m.e. w.r.

34.40 459.36 DAM NO. 4 The original dam was built
Concrete facing and concrete spillway at upper end of pond hence in 1832-34 but is now covered by the pool from the present

400-horse wall of boulders hence

Messing revetment wall - currelated limestone rubble; 150 ft. long on downstream end of pond hence.
dam. It was a timber crib with stone fill and wooden sheathing, 810 ft. long, 52 ft. wide at top and 15 ft. high. The timber ties were bolted to bedrock. The front slope of old dam was 1 1/2 to 1 and the back slope 2 to 1. The dam, stop gate and guard lock cost $79,095. The guard bank enlarged from 39,103 cubic yards to 43,013 cubic yards in 1835. The abutment bank was breached in 1834, 1836, 1843, 1846 and 1847. The dam was breached in 1836 and 1840. A serious breach on May, 1846 carried away 80 ft. of the structure. The repairs were carried away in July and November, 1846. The dam, abutment bank, and guard bank were rebuilt extensively in 1847 to 1848. The guard bank was breached 1836, 1846, 1847, 1852 and a large breach, 120 ft. long 1857 when the entire river passed through it. Another breach in the guard bank occurred in 1858.

A new gravity type masonry dam, directly in front of the crib dam, was started in 1857. Stone for this dam was
from a quarry in the Concocheague Limestone, 400 ft. north of the dam. The Maryland abutment was finished in 1856 and later extended. A freshet in 1859 took out the abutment and masonry work on the Virginia (West Virginia) side and opened a 100 ft. breach in the guard bank. In 1860 another freshet took out the repair work. The masonry dam was completed in 1866 and was 630 ft. long between abutments and 715 ft. in overall length. After power plant installation in 1915 it was 810 ft. in overall length.

The dam is 18 ft. wide at the base, 12 ft. wide at the top and 20 ft. high. The dam is built of limestone masonry rubble, grouted and faced with squared limestone blocks set in mortar. It cost $240,000 in 1866. The pool impounded is 8 miles long. The Nov. 24, 1877 flood caused 180 ft. of center of new dam to give way with the breach extending to the low water surface on the downstream side and 4 to 5 ft. below the crest on the upstream side. The guard and abut-
ment banks were also breached. A 175 ft. break occurred on the Virginia side of the dam in 1878 and was repaired in 1879 at a cost of $29,309. The 1889 flood caused a breach in the guard bank and the abutment bank. A concrete core was then placed in the abutment bank. The Maryland abutment was rebuilt in 1892.

Water power rights at the dam were leased by the Martinsburg Power Company in 1906 and the power plant on the West Virginia side was placed in operation in 1915. It has two 500 KW generating units and is now operated by the Potomac Edison Company.

Foundation leakage through solution openings in the limestone foundation became serious in the 1920's with the worst leaks 50-75 ft. and 115 ft. from the Maryland abutments. These were grouted with 100 tons of asphalt in 1930. In spite of the repairs, 75 ft. of the dam in the area of the leaks was carried away by floods and ice on February 29.
and March 19, 1936. It was rebuilt by Trustees of the
C & O Canal Company for $33,232 with money advanced on the
annual rent by the Potomac Edison Company. Still later the
abutment bank washed out on May 13, 1937.

The abutment bank between the dam and the canal has a
core wall (cutoff) of masonry and concrete placed in 1889
with an earth embankment over core. The abutments of the
stop gate at canal end of abutment bank are built of ham-
mer-dressed, finely varved limestone cut by small fractures.
Rope grooves cut the limestone. A machinery house was over
the stop gate but it was carried away in the flood of March
1936. It was rebuilt as a museum by the National Park Ser-
vice and was carried away by the flood in Storm Agnes,
(1972. An outcrop of gray Conococheague Limestone is
on the berm side of the stop gate. The beds strikes N10°E
and dip 35°E. West of Dam no. 4 the canal is 10 ft. below
the pool of dam and is protected by a guard bank one mile
long, 17 ft. above the canal on the river side of the towing path.

Plan Dam no. 4 to Guard Lock
Original 4"N x 10"W; final 4"N x 5"W.

85.44 TERRACE ON BERM A broad bench slopes upward from canal level and a second, gravel strewn terrace is on the top of the hill, 140 ft. above river level.

85.62 GUARD LOCK 4 10 ft. lift, constructed 1833-34. It is faced with hammer-dressed Conococheague Limestone in blocks 2 ft. wide, 2 ft. thick and 2 to 5 ft. long. The wall at the head of the lock is 20 ft. high, where a bridge crosses it. There are slots for stop gate planks at the head of the lock. The lock gave access from the canal to the pool behind Dam no. 4. A pierhead, constructed in 1834, formerly was on the upstream side of the lock. An embankment on the berm at the lower end of the lock is the remains of a crib for a lower extension.
Lockhouse, constructed in 1837, was on the berm 100 ft. from the head of the lock but only the stone foundation remains.

25 ft. north of the lock is a culvert under the towing path and guard bank which carries a feeder to the canal. The culvert has a semicircular arch with a span of 8 ft. and a rise of 4 ft. There are 10 ringstones and a keystone in the face. These are cut limestone. The abutment is 1 ft. high and made of concrete. The parapet and coping are 1 1/2 ft. high. The culvert was constructed in the 1870's. A concrete frame control gate is on the river side of the culvert.

There is no canal for 3.28 miles above Guard Lock 4. The barges were towed in the pool. The towing path along the river bank was constructed 1833-34 and 1836-38. Except for
the first mile most of the towing path has been washed away.

85.62-85.69 **OUTCROP** Limestone of the Rockdale Run Formation is exposed in a bluff 60 ft. high east of towing path.

85.89-86.58 **HIGH FLOOD PLAIN** The broad, flat area to east of the towing path is a flood plain that is covered by the river occasionally.

85.95 (85.73) **OUTCROP** The limestone in the hill to the east of the towing path is part of the Rockdale Run Formation.

86.51 (86.40) **OUTCROP** A 5 ft. ledge of dark gray Stonehenge Limestone, strikes N15°E and dips 66°NW.

86.61-86.67 **OUTCROP** A low cliff of Stonehenge Limestone with beds 1 ft. thick to massive, strikes N20°E and dips

(271)
86.73 (86.66) OUTCROP An 80 ft. bluff of Stonehenge Limestone is along the towing path. Solution alcoves are developed in face of bluff. 80 ft. north along the outcrop is a ravine scoured to bedrock.

86.78 (86.72) OUTCROP A 20 ft. ledge on the towing path is formed of dark gray Stonehenge Limestone. The rock is massive and has fine angular calcite veins. The limestone weathers white.

86.30-87.65 GALLOWAY CLIFFS Cliffs, 20 to 80 ft. high, are along the towing path. They are formed of dark gray Stonehenge Limestone. The beds are contorted with an overall strike of N30°E and dip of 60°SE. A small cave at 86.80 (86.75) is 20 ft. east of the canal. The entrance is 10 ft. above the level of the towing path and is 6 ft. square. The cave extends 8 ft. to a crawlway which trends
south parallel to the towing path. A fault trending N30°E crosses the towing path at a small ravine 100 ft. northeast of the cave. The cliffs to the north are massive, gray Conococheague Limestone with the beds striking N30°E and dipping 60°NW at 86.85 (86.30). A low ledge of Conococheague Limestone is on the towing path at 87.01. The limestone is dark gray on the west (riverside) and buff colored on the east (landward side). The beds strike N30°E and dip 60°-70°SE. Buff, fine grained limestone is exposed along the towing path to 87.41. Joints are in three planes with angles of 60° between the planes and vertical to the beds at 87.10. Ravines scoured to limestone bedrock are at 87.19 and 87.25. From 87.26 to 87.33 there are high bluffs of Conococheague Limestone. The limestone is massive with prominent calcite gashes. The beds strike N40°E and are vertical. A V-shaped ravine cut to limestone bedrock is at 87.34. It has a channel 4 ft. deep developed along a joint.
trending east and dipping 60°N. Bluffs of Conococheague Limestone up to 80 ft. high are along the towing path from 87.35 to 87.65. Calcite veins are numerous and some beds are fractured. The beds strike N40°E and are vertical.

(Berks Run)

87.68-88.04 BREAK IN CLIFFS At the north end of the break there are bluffs of Conococheague Limestone up to 100 ft. high. The limestone is light gray on weathered surfaces and dark gray, microcrystalline on fresh surfaces. Calcite veins are common. The beds strike N10°E to N20°E and dip 75° to 80° WNW. The fault cited at 86.80 recrosses the towing path at 87.75. On north side of the fault there is dark gray Stonehenge Limestone with irregular slabby beds to massive. There is solution opening, 4 ft. wide, 3 ft. high, 6 ft. long at level of towing path at 87.99. Jointing in the Stonehenge Limestone strikes N75°W and dips 58°N; E-W, dips 64°S at 88.01. Along the northern part of the cliffs, Stonehenge limestone strikes N20°E and dips 70°SE.
Shaffers, Galloway, Charles) Mill The mill was built in the early 1800's. A steel wheel was installed shortly before the mill ceased operations in 1922. The machinery was dismantled and stored in the mill. The foundation of the mill is limestone and the superstructure is wooden.

The inlet and dock at the mill are lined with limestone:
- Best basin 40 ft. square, landing ramp, trestling limestone walk with rubble.
- Concrete slat bridge over dam on rear entrance.

Ledges and bluffs of Stonehenge
Limestone are up to 100 ft. high. The limestone is thin bedded, gray with siliceous beds, 1/8 inch apart. These beds stand in relief on white and light gray weathered surfaces.

Fractures are normal to the bedding, 1 to 6 inches apart.

The strike of the beds is N10°E and the dip is 76°E increasing to vertical at the west end of the outcrop.

Joints strike N70°W and dip 70°SSW to vertical. Solution
openings are in the middle part of the outcrop.

88.22-88.24 **OUTCROP** Low ledges and bluffs along towing path. A fault cuts the rocks near the east end of the exposure. The fault plane dips east and Stonehenge Limestone on the east has been thrust westward over Rock Run Formation on west. Bluffs of massive gray limestone, Rock Run Formation, continue along the towing path on the west side of a small ravine. Small, fine solution lines are etched on the bedding planes at the level of towing path. The limestone beds strike N 30° E and dip 36° NW decreasing westward to nearly horizontal.

Diagram of geologic section MacMahons Hill to Lock 41
Original 3 lines on 10"x14", reproduced at 3"x4"

88.26 446.75 **HOWELL CAVE** The cave is a large alcove-like opening at the head of a ravine, 50 ft. north of the river. It is the remains of a domepit 30 ft. high and is the face of a bluff 60 ft. high. A gravel-strewn crawlway
at the base of the cliff trends northwest and connects with
single passage cave 1 to 10 ft. high. Small rooms are
developed along the passage. A stream flows out the entr-
ance in spring and early summer (Franz and Slifer 1971, p.
80-81). The cave is in a dark gray limestone, Rockdale
Run Formation which is massive on fresh surfaces but on
weathered faces beds are 1/2 inch thick are discernible.
Fractures striking N60°W and N30°E, vertical, are prominent
on the northwest side of the alcove. Joints trend N50°E,
N80°W, and N-S; all are vertical.

88.26-88.40 OUTCROP Thick-bedded, dark gray to
black dense limestone, Rockdale Run Formation is exposed
along the towing path. On weathered surfaces the limestone
is blue-gray. Beds are 1/2 to 6 ft. thick and the bedding
planes are wavy. Subangular breccia and contorted layers
are indicative of slump in many beds. A dense net of
calcite veins, 1/32 inch wide, is present locally. Strike
of the beds is N10° to N30°E and the dip is nearly horizontal except for small flexures with dips up to 12°E. The dip at the west end of the outcrop is 24°E. Prominent vertical joints strike N80°W and N30°E.

88.40 **LITTLE HOWELL CAVE** This cave is an overhang, 30 ft. deep, 80 ft. high and 80 ft. long, in limestone of the Rockdale Run Formation. The cave opening is 10 ft. high x 3 ft. wide at the east end where it is 20 ft. above the towing path. A gravel-floored crawlway and fissure extend about 20 ft. NE from the entrance (Franz and Slifer, 1971, p. 80):

88.40-93.66 **OUTCROP** Dark gray limestone, Rockdale Run Formation is in ledges along the towing path. The weathered surface of the limestone is dark blue. Beds are over 10 ft. thick and some strata are distinctly cross-bedded. The strike of the beds is N30°E; dip is 30° to 52°SE.
Cleavage fractures, spaced 2 to 4 inches, are prominent in places. The cleavage strikes N50°W and dips 70°SW. Prominent joints trend due east and are vertical. A cave opening, 10 ft. high x 6 ft. wide, is in an alcove in a bluff 100 ft. high near the east end of the section. The cave is a narrow fissure beyond entrance.

88.68 447.15 FORD Limestone blocks and rubble are in creek to provide a ford on the towing path.

88.70-88.90 447.35 OUTCROP BLUFFS Along the towing path are dark gray limestone, Rockdale Run Formation. Beds are 1/2 to 2 ft. thick and strike N30°E with dip 52° to 68SE. A prominent joint trends E-W and dips 60°S. Spine-like ridges jut towards the towing path at the west end of the exposure. A high flood plain is on the West Virginia side of the river.

88.90 447.45 LOCK 41 15 ft. lift, constructed 1833-35,
rebuilt 1869. This lock was originally planned as a composite lock in 1832 but was constructed of hammer-dressed wavy banded limestone. The limestone blocks are mainly irregularly bedded and knobblly. Some of the blocks are massive. The wall on the river side of the chamber is concrete. The pile of limestone blocks on the southwest side of the lock were removed from the lock chamber at the time the concrete was placed. Revetment of limestone rubble is on the north side of the lock. Lock 41 which connected the canal to the west with the pool behind Dam no. 4 was originally planned to be built about 4 miles west near the present site of Lock 43. The upper part of the lock is partially buried in silt from floods. Limestone of the Rockdale Run Formation is exposed at lock. The beds strike N30°E and dip 72°SE.

Lock rebuilt 1861. The river side of the chamber is dark gray.
finely crystalline limestone. Some blocks in the chamber
have wavy banding. The berm wall of the chamber is concrete.

A pile of blocks removed from the chamber is on the river
side of the towing path. A crossover bridge for the towing
path is at the lower end of the lock. Lockhouse no. 33, was
formerly on berm but only the brick foundation remains. No flame.

89.00-90.40 447.42 MP89 In 1833-34 two sections of canal,
section 167-168, were constructed too close to river in
this stretch and were insecure. These sections were recon-
structed in 1835 with the towing path inside the line of
the old berm.

89.21 447.49 CULVERT 113 1/2 Constructed 1834-35.
The arch is hammer-dressed limestone with a 4 ft. span and
lamps at right angles to culvert face; 15 ft. embankment abrim coping.
a 2 ft. rise. 8 ringstones and a keystone are in the arch.

The abutment is 4 ft. high and the parapet and coping are 2
2 ft. high. All are coursed limestone rubble. Seme m hirn.
adjacent to the canal grades to terraces inland. The first
terrace is at the fence and the tree line on the spurs of
hills. The second is at the top of hills. Numerous cobbles
of sandstone in sandy silt soil cover the terraces. Lime-
stone ledges are on the spurs of the hills in form of large
humps at 89.60. Limestone cliffs (Rockdale Run Formation)
are on the West Virginia side of the river at Whittings Neck.
West Virginia shore. This is the site of Foremans Ferry.

Limestone is in front of the cottage on the berm. The beds
strike NW40°E and are vertical. 50 ft. west the beds are 1
to 4 ft. thick with a strike of N80°W and a dip of 10°N
along a fault. A ledge of Stonehenge Limestone is west of
fault and near the west end of the exposure with beds
Diagram of structure, original 4"h x 8"w, final 2"h x 4"w.

90.96 OUTCROP ON BERM A ledge of Stonehenge Limestone, with beds up to 4 ft. thick is on the berm. The strike of beds is N30°E and the dip is 40 to 57°SE.

91.00 MPQ1 449.55 OUTCROP ON BERM A ledge is formed of massive Stonehenge Limestone with beds striking N40°E and dipping 26°NW. Meadow Terrace on W.Va. side of river.

91.03 OUTCROP ON BERM A ledge contains massive Stonehenge Limestone.

91.09-91.13 OUTCROP ON BERM A cliff, 50 ft. high, is formed of thick bedded to massive limestone of the Rockdale Run Formation. The strike of beds is N40°E and the dip is 26°NW. Near the north end of the cliff the beds are nearly horizontal and contain solution tubes, 1 to 2 ft. in dia-
meter, filled with orang brown clayey silt.

91.23 OUTCROP ON BERM A cliff, 50 ft. high, is formed of limestone of the Rockdale Run Formation. It is thick bedded to massive and the beds strike N40°E and dip 50°NW. Outcrop ends 449.90

91.33-91.36 OUTCROP ON BERM Limestone of the Rockdale Run Formation forms ledges. The beds are 2 to 4 ft. thick except at the upstream end of exposure where they are massive. They strike N40°E and dip 50°NW.

91.66 450.10 CULVERT 119 Constructed 1835. The semi-circular arch is of cut limestone and has a 2 ft. span and 2 1/2 ft. rise. 8 ringstones and a keystone are in the face of the arch. The parapet is 1 ft. high. (284)

91.60 450.10-450.30 OUTCROP ON BERM At the power line crossing there is a cliff 40 ft. high formed of limestone of the Rockdale Run Formation. The beds are 1 to 4 ft. thick and Dip 20° down stream on east; 30° a.s. on west; 2-4 ft. limestone beds, strike at right angle to canal = 290°. Can at east end 30 ft. abn. canal; 3 ft. entrence; 1 ft. high soft in. Solution can just north of center of outcrop.

(284)
strike N10°W and dip 15°W at base of cliff. The strike is N20°E, dip 15°WNNW in upper part of cliff. A high flood plain and terrace are on top of the hill on the West Virginia side of the river.

Diagram of structure. Original 4"h x 8"w, final 2"h x 4"w.

91.78 OUTCROP ON BERM Massive limestone with beds over 10 ft. thick, Rockdale Run Formation, form ledges. The beds strike N10°W and dip 30°W.

91.87 OUTCROP ON BERM Ledges of limestone, Rockdale Run Formation are on the berm. The beds are 1/2 to 3 ft. thick and strike N10°W and dip 35°W. A solution tube, 3 ft. in diameter, is 30 ft. above level of towing path in the ledges.

MP92 450.38

92.00 450.38 OUTCROP ON BERM A bluff is formed of Chambersburg Limestone. The beds are 2 inches to a foot thick and strike N30°W, dip 55°NE.
OUTCROP ON BERM Chambersburg Limestone

at the south end of a bluff. A cave entrance, 10 ft. wide x 6 ft. high, is in the bluff. The cave pinches down to 2 small solution tubes 6 ft. from the entrance. A spring issues from a solution tube, 2 ft. in diameter, at canal level, 50 ft. north of cave. Strike of beds 32°, dip 54° upstream.

OUTCROP ON BERM Bluffs 50 ft. high, cut by a ravine, are formed by Chambersburg Limestone. The beds are 1 inch to 1 ft. thick and hackly. The strike of the beds at the ravine is arcuate trending N40°W with a dip of 45°NE at the south. The strike is N10°E, dip 80°E at the north. The entrance to Dellingers Cave is at the top of bluff on the side of the ravine. The entrance is small hole opening into a room 35 ft. long, 19 ft. wide. A passage from the room trends southwest for 160 ft. where it pinches out (Davies, 1961 p. 41-42; Franz and Slifer 1971, p. 76-77). High flood plain terrace in W.Va.

92.05 450.38
92.14
92.23
Ledges 30 to 50 ft. high are formed of Chambersburg Limestone. The beds strike N20°E and dip 30°ESE at south end of exposures; the dip is 45°ESE at 92.48. A ravine scoured to limestone bedrock is at 92.46. A fault cuts the limestone at 92.48 with beds of shiny, dense gray limestone on the downstream side of the fault. The strike of these beds is N-S and the dip is 80°E to vertical. Dull black, dense, calcite-veined limestone is on the upstream side of the fault where the strike is N10°W and the dip is 45°E. The fault trends N55°E, dips 45°NW. A breccia zone, 1 to 2 ft. wide, is on the upstream side of the fault. Drag fold on the downstream side of the fault indicates the downstream block moved upwards relative to the upstream block. A revetment of limestone rubble is along the river side of the towing path.

Diagram of fault zone

4"h x 3"w → 2"h x 4"w

45°.85 - Limestone revetment on inside of the path; 60°slant; block, up to 2 in. thick x 4 ft. long x 2 ft. wide → 45°.90.
2.59-2.63 OUTCROP ON BERM Chambersburg Limestone crops out in low ledges with beds 1 to over 10 ft. thick. The beds strike N10°E and dip 70°W. A ravine cut to limestone bedrock is at the south end of the exposure. A spring with a concrete basin is on the berm of the canal 100 ft. north of the outcrop.

2 in. pipe at top of basin = 4.58 ft.

44° 8' Smooth faced ledge of limestone, 70°W, high on berm. 4/10 joint, dip 70°w, turns canal.

92.67 OUTCROP ON BERM A low ledge of Chambersburg Limestone is 100 ft. east of the canal berm.

All along the bluff area there is a rock outcropping at the top of the towpath to 450.00

92.76 451/0 WASTE WEIR This is a concrete frame structure 0 paddles
with 3 gates and insert boards. Concrete masonry 20 ft. long at right angles to canal on outside of towpath.

92.97 457.31 LOCK 43 9 ft. lift, constructed 1833-34.

The facing is hammer-dressed limestone. The limestone blocks have clay seams 2 to 4 inches apart and prominent concrete patch or beam coping, calcite veins. Canal Company records indicate that lock 43 was extended downstream to form a double lock in 1881. No evidence of such an extension remains. The lockhouse is on

Flume on berm, 20 ft. long, 8 feet above water surface.

Stop wall norel in upper end of lock, extends to within 2 ft. of top of lock, made 3 inches.

4.5 in. deep. (288)
the berm and is whitewashed brick on a limestone rubble foundation. It was constructed in 1836. An embankment on

the berm extends upstream from the lock. Lock 43 is at

the lower end of the Four-mile Level. The embankment on

the berm side, middle of lock, covered with 4 1/2 ft. of

loam; 15 ft. on berm from lock. A 10 ft. embankment on

the lock side. 53 ft. deep. 57 ft. x 5 ft.; 15 ft. on

bottom of embankment; 33 ft. on berm from lock. Embankment is 12 ft. above the coping. A 12 ft. embankment is above the coping. The arch face is cut limestone. The span is 8 ft.

with a 4 ft. rise. 10 ringstones and a keystone are in the face of the arch. The abutment, 5 ft. high, and the parapet and coping, 2 ft. high, are coursed limestone rubble. A clunch face, paving on stone, slabs in embankment and

abutment. The parapet and coping are 3 1/2 ft. high. Wings, spandrels and parapet are coursed limestone rubble. Wings at right angle to arch face, each 6 ft. long on abutment side, no wings on berm. 12 ft. embankment above coping. Sink 10 ft. x 5 ft. sides in ground.

CULVERT 120 Constructed 1833, lengthened 1834. The semi-circular arch is cut limestone and has a span of 6 ft. and a rise of 3 ft. 10 ringstones and a large keystone are in the face of the arch. The springing line is at water level. The parapet and coping are 3 1/2 ft. high. Wings, spandrels and parapet are coursed limestone rubble. Wings at right angle to

CULVERT 121 Constructed 1833-34. The semi-circular arch is cut limestone and has a span of 6 ft. and a rise of 3 ft. 10 ringstones and a large keystone are in the face of the arch. The springing line is at water level. The parapet and coping are 3 1/2 ft. high. Wings, spandrels and parapet are coursed limestone rubble. Wings at right angle to
A prominent bluff of Chambersburg Limestone on the West Virginia side of the river. The beds strike N10°W and dip 45°E.

FALLING WATERS BRIDGE Constructed 1833-34.

All that remains are the abutments built of hammer dressed, dark gray to black, dense limestone. The blocks in the abutment are up to 4 ft. long and 3 ft. high. The abutment is 13 ft. high above the towing path and 18 ft. high above the canal on the berm. The original bridge was a timber, lattice truss. The superstructure was replaced with a timber, Warren truss and the berm abutment rebuilt in 1869. The superstructure was rebuilt in 1886 and the bridge was carried off in the flood of 1936. Some of Lee's Confederate Army crossed here on its retreat from Gettysburg, July 14, 1863.

OUTCROP ON BERM Gray Chambersburg Lime-
stone in beds 1 ft. thick forms low ledges. The strike is
N37°E and the dip is 35°NW.

94.98 OUTCROP ON BERM A low, densely veget-
ated bluff is formed of Chambersburg Limestone.

MP 95 453.41 121½°
95.05 453.48 CULVERT 122 Constructed 1833-34. The

semicircular arch of cut limestone has a span of 6 ft. and
a rise of 3 ft. There are 10 ringstones and a keystone in
the face of the arch. The springing line is at water level.

Parapet and coping are 3 ft. high. The wings, spandrels
10 ft. embankment above coping.

and parapet are coursed limestone rubble.

95.20 453.65 - Cumberland Valley H.B.O.

95.40 453.95 OUTCROP ON BERM A steep bank rising 80 ft.

453.40 outcrop - shale? Enarges on shale
above canal is formed of Martinsburg Shale. At the base of
the bluff is an outcrop of black, thin bedded, slabby,
highly cleaved shale in beds 2 ft. thick. The strike is
N40°E and the dip is 75°SE.

95.54-95.68 OUTCROP ON BERM Extensive exposures.
of Martinsburg Shale are in low bluffs. The shale is black, thin-bedded, platy, with some beds up to a foot thick. The strike is N35°E and the dip 50°NW. Cleavage strikes N40°E and dips 85°SE to vertical. At 95.57 the strike of the beds is N40°E, with the dip vertical. At 95.59 there is a false syncline formed by sinuous fractures that give the appearance of a folded bedding plane. At 95.68 there is a small exposure of shale on the upstream side of a ravine; strike is N35°E and dip 40°NW. There are occasional outcrops to 95.88.

Diagram of section - original 5"h x 10"w; printing 2"h x 4"w.

95.70 (95.55) 453.99 CULVERT 123 Constructed 1833-34. The semicircular arch is cut limestone with a span of 6 ft. and a rise of 3 ft. 12 ringstones and a keystone are in the face of the arch. The abutment is 3 ft. high. The parapet and coping are 3 ft. high. The spandrels, parapet and wings 10 ft. embankment above coping are trimmed and coursed limestone rubble. A high flood
plain is at canal level on the river side for a mile up stream.

96.1 (96.13) Underwater, 125'4' x 206'. Long east of culvert 124. Cliff along east side of underwa. Underwater incline east of culvert 124. Foundation of arch 124 on hum, incline east of underwa., 16'x28' 96.24 (96.07) 454.65 CULVERT 124 Constructed 1833-34. The 6 semicircular arch is cut limestone with a 6 ft. span and a 2'1/2 ft. rise. 3 ringstones and a keystone are in the face of the arch. The springing line is at the foundation.

The parapet and coping are 1 1/2 ft. high. The spandrels and parapet are coursed limestone rubble. The center part upstream wing fallen. No wings. Bam face collapsed; collapse of prism on arch; and removed. of the arch under the bed of the canal has collapsed (1971).

96.4 for bridge over canal to access. 15' x 20' on west side of culvert 124 on ramp.

96.72 (96.52) 455.73 CULVERT 125 Constructed 1833. The road comes in here.

semicircular arch is cut limestone with a 4 ft. span and a 2 ft. rise. 8 ringstones and a keystone are in the face of the arch. The abutment is 6 ft. high. The parapet and coping are 2 ft. high. The spandrels and parapet are coursed limestone rubble. 8'3' embankment at top coping.

96.80 (96.59) V-shaped barrage in river. This is
possibly the remnant of an old sluice structure used in fishing or navigation.

96.91 (96.66) CULVERT 126 Constructed 1833. The semicircular arch is cut limestone with a span of \(\frac{6}{4} \) ft., and a rise of \(\frac{3}{2} \) ft. 5 ringstones and a keystone are in the face of the arch. The abutment is \(\sqrt{2} \) ft. high and is coursed limestone rubble. The culvert was undermined and the wings came on beam. It collapsed. Poured 1 tier, coping 1 tier: 2 ft. was all washed out in September, 1927. Rubble from the culvert now forms a bar in the river.

97.02 (96.77) 45° 45 CULVERT 126A Constructed 1833-34. The arch was semicircular with a \(\frac{2}{3} \) ft. span and a \(\frac{2}{3} \) ft. rise. The abutment was \(\sqrt{3} \) ft. high. The culvert is completely washed out (1971). Outwash on beam in creek.

97.03 (96.78) 45° 50 OUTCROP ON BERM Low ledge is formed of limestone of the Rockdale Run Formation. The strike is \(N32^\circ E \) and the dip is \(70^\circ SE \).
Powers Bend.

Piers of the old Cumberland Valley Railroad bridge are in the river. The abutment of the bridge on the berm is built of limestone blocks. The pier on the side of the towing path has 4 tiers of wavy-banded limestone with 13 tiers of Seneca red sandstone above the limestone. The 5 piers in the river are limestone blocks capped by concrete. The original timber truss bridge was built in 1871-72 by the Keystone Bridge Company for the Franklin Railroad and it was 840 ft. long. It was opened, October 1, 1872 and 5 spans carried away in flood of November 25, 1877. One other span was damaged in the flood. The piers were raised and an iron superstructure with Pratt deck trusses was completed by the Delaware Bridge Company on March 20, 1878 at a cost of $42,897.55. The flood of June 1, 1889 swept 6 spans away. In rebuilding the piers were raised again and a new steel superstructure of Warren through trusses was erected by the Union Bridge Company.
Company of New York. This bridge was 862 ft. long with 7 spans each 50 ft. above low water. It cost $72,131.40 including $13,414 for the raising piers. Some of the old bridge was salvaged and used in an iron bridge, 149 ft. long, at Martinsburg, W. Va. The piers repaired again in 1904. In 1913, after completion of a new bridge upstream, this bridge was cut up and dropped into river for salvage (Cumberland Valley RR, Annual Reports, and Engineering Record). There was a small basin with a dock on the berm between this bridge and the present bridge to the west. It was built in 1870 by the Franklin RR to transfer coal from the canal. 2 tracks were on the berm side of the basin, one for railroad cars, the other for a loading crane. A switchback to south provided connection from the main line of the railroad to the wharf. 97.58 (97.35) POWELLS BEND Penn Central Railroad bridge no. 82/13. This bridge was fabricated by the Pennsylvania...
Steel Company in 1914 and constructed in 1913 to 1916. It has deck, plate girder spans, each 100 ft. long with a concrete deck. The 12 concrete piers are each 13 ft. wide with the neat work 11 ft. wide tapering to 6 ft. at the top. The piers are 56 1/2 ft. high.

Narrow entrance through berm dike to basin, 200' long, x 175' wide

CULVERT 127. WILLIAMS CULVERT

Constructed 1833-34. The semicircular arch is cut limestone (on berm) and has a span of 6 ft and a rise of 3 ft. The culvert had no wings. Abutment is 5 ft. high. This culvert was breached on April 21, 1863 and a crib 142 ft. long was placed in it.

The culvert was rebuilt in the fall of 1863. It was destroyed in a flood in August 1926. Only the limestone rubble of the inner arch and the berm facing remain (1971). Trench washed out, embankment gone. Outcrop at base of trench anomalous.

MP 98: 456.65
456.89 - 6' thick of slope stone work 6' wide x 6' high; ledge of stone wide 2' high x 2' deep; collapsed culvert. All stone fallen.

INTERSTATE HIGHWAY 81 BRIDGE

Two parallel continuous, deck, plate girder bridges were built 1965-67 to carry I81 over the Potomac. The cut for the

Stone bridge: 500 ft. long, T-shaped. November 1975
456.45 - Culvert - 0.5 from Culvert 127
French drain in culvert drains spring under canal; drain of filled cistern
abutment is in a 75 ft. bluff of Stonehenge Limestone. The limestone is dark gray, finely banded, dense to finely crystalline and weathers white. The strike of the beds is N 40°E and the dip is 60°SE.

Revetment walls on towpath 18 to 457.25

28.92 (98.74) 457.38 WASTE WEIR This is a concrete frame structure with 3 gates with insert for boards. No paddles - concrete wings at right angles to spillway.

457.42 to culvert 128 There is a pile of concrete 10-12 ft. high

99.12 (98.98) CULVERT 128 Constructed 1833-34. The semicircular arch has a span of 9 ft. and a rise of 2 ft.

The culvert is filled to the level of the coping. A sewerage plant is on the river side of the towing path west of the culvert.

24 MP 99 457.65

99.16 Old quarry on bank

99.23 (99.10) LOCK 44 10 ft. lift, constructed 1832-34.

The facing is white and gray limestone blocks. Wavy, clayey bedding planes are on the gray limestone. The white limestone has smooth faces. Many of the blocks have shallow lifting holes. The embankment in the canal bed at the lock

Revetment to
flume 10'10"
lower end of the lock may be the remnant of cribs for a
lower extension under constructed in 1881. However, records
of the Canal Company indicate that Lock 43 had an extension
and that the extension for Lock 44 was not completed. A
tumble flume with no weir or overfall is on the berm. A
flume 6-15 ft. ends: lower repair. 20 ft. from lock. Fluid was around wing on
upper berm; right angle wings at lower end.
Snubbing post is near the upper gate. The wall of the
chamber was thrown in by Confederate troops on April 4,
1863. It was rebuilt later. The lockhouse is on the towing path and is a 2-story clapboard structure with a cellar.

99.35 (99.20) POWER PLANT This plant of the Potomac
Edison Company was built 1922-23. A low dam across the
Potomac River impounds water for cooling.

99.44 (99.32) WHARF The limestone wall on the berm side
of the canal formerly was the front of a wharf on which
there was a transfer crane for unloading barges. This is
also the site of Darby Hill, which was destroyed by fire in
Lykins Valley Coal Co. wagon shed on berm west of street.
9.21.75 Falls Church - begin 9.4.634(dwg) 7677(VW)
Shepherdstown 9.4.697 7.730
Licking Creek Falls Church - end 9.4.774 7,827

1920.

99.64 (99.48) [BRIDGE] This bridge carries the road across the canal to Riverside Park. The original timber truss was constructed in 1833-34. The abutments are rough dress limestone pier setts of granite. The bridge was destroyed in the Civil War and the timber truss was rebuilt in 1866. 56 ft. long, abutment on top path 29 ft. wide; pier on trim 30 ft. wide.

The present iron truss was built by Wendel Bollman Bridge Co., Baltimore, in 1879. The railroad lift span across the canal, 150 ft. to the west, was built in 1923. Martinsburg shale is exposed on the berm along the railroad siding.

The shale is black, crumbly, and weathers brown. The strike of beds is N40°E and the dip is 38°NW.

End 8/16/75, begin 9/8/75 476.60 at RR lift bridge.

99.66 (99.50) [HIGHWAY BRIDGE, U.S.11] This bridge was constructed in 1908-09 by the Washington and Berkeley Bridge Company. It was fabricated by the Pennsylvania Steel Company and opened August 10, 1909. It consists of 15 spans.
each 100 ft. long and 2 spans each 90 ft. long. All are through plate girders, 42 ft. above river. The bridge is 1680 ft. long. Dec. 6, 1908 during construction, at about 9 AM, the top of pier 11 under traveller, gave way and carried 14 men and the traveller into river. 8 men were killed. The concrete piers were recapped 1932 and the bridge was purchased by the Maryland State Roads Commission on December 31, 1953 for $900,000. A ferry and ford were at the site since 1744 and were known as Watkins, Lights, Lemons, and Ordingers Ferry. The town of Williamsport was founded in 1786 by J.

H. Williams.

99.73 (99.59) WILLIAMSPORT (CUSHWA) BASIN Constructed 1835-38. The basin is triangular in plan with the apex to the north and is faced with limestone revetment. Coal was formerly transhipped to the Western Maryland Railroad at this point. The railroad was opened from Baltimore to Williamsport on November 27, 1873.
CONOCOCHAGUE (No. 5) AQUEDUCT

Completed August 1832-34, cost $66,759.79. The aqueduct has 3 segmental arches, each 60 ft. long with 15 ft. rises. There are 56 ringstones and a keystone in each arch. The overall length between abutments is 196 ft. and 254 between the ends of the wings. Ringstones and skewbacks are cut limestone with some concrete repairs to the ringstones near the skewbacks on the towing path side. The east arch on the berm is half concrete and the rest of the face of this arch has fallen.

The coping and parapet are 7 ft. high on towing path side with the coping 30 ft. above the stream and 33 ft. above foundations of the piers. The parapet is 6 1/2 ft. wide at the top, 7 ft. wide at the bottom on the towing path side. The berm parapet was formerly 4 1/2 ft. wide at the top and 5 ft. wide at bottom. The piers are 16 ft. thick with pilasters (Tuscanian order) on the face of the piers, abutments and ends of wings. The abutments, faces
Conococheague Aqueduct

Coping

Pilasters

8" round
1" round
1"

- Water table

- Top on wings

- 8"
- 5"
- 4"
- 2"
- 1"
- 1.5"
- 1"

- Each arch, stem side, east 1/3 concrete
- Part g arch face on stem has fallen
- Joint in trunk: 8"x8" 4"t. spacing, in concrete
- All arch intact on west side
- West arch intact in stem side.

- Bridge one arch at hilltop - open (penny) again.

- E2 Chey Metal
- 5.75" Speedometer
- 7.40
- Conococheague Aqueduct - Inlet side
- West end
- Water table
Conceicao Aqueduct

Railing:
- Main vertical: 8 ft. 9 small rods between

3 1/2" square, 1 1/4", forged iron plate railing

Rails 8" apart. Only water guard of railing remains plus a few square feet.

\(\checkmark \) Lock 44 - Swing gate with paddle turns on upper end;socket thrust to upper end of upper sector. Swing gate at lower end, pivoted, rotated.

Pier lintel along bank in stem end: It is 10 1/2" in diameter with 57 1/2" in stem width; Straight, Vreugt gradually rises in this distance. Aperture in stem side of pierment wall.
of piers, pilasters, water table and coping are cut lime-
stone. The parapet, spandrels, wings, and piers are ham-
mer-dressed and ranged limestone. Stone for the aqueduct
came from a quarry 3 miles away. The iron railing was
placed on the towing path side in 1835. It has square posts,
1 1/2 inch on a side, 4 ft. 3 1/2 inches high, and the
balusters are 1 inch rounds. Spiral side braces support
the railing. The aqueduct leaked seriously after 1851 and
the Confederate troops tore down 74 ft. of the aqueduct to
canal level on August 4, 1863. All of the coping was thrown
down and there was a 6 to 10 ft. opening for the width of
the aqueduct in one arch. This damage was repaired in 1863.
The top work was torn off again on July 18, 1864. The dam-
aged areas of 1863 and 1864 are noticeable because they now
contain areas of undersized stones, especially at the west
end on the towing path side. The berm side, except for
the ends of the parapet fell on March 5, 1865. The breach
was 115 ft. long and the shattered area 155 ft. long. Span-
drels over the center arch also fell. A wooden trunk was
put in the aqueduct and stonework was rebuilt 1869-71. The
masonry wall on the lower end of the berm side fell March 9,
1887 and rebuilt. On , 1920 the berm parapet
collapsed again carrying a barge, mules and crew into the
creek. A wooden trunk was placed in the aqueduct with base
beams of 8 inch timbers in concrete spaced 4 ft. apart. 12
ft. vertical beams formed the side with slanting external
timber braces. The aqueduct was the scene of riots in 1834
when several hundred Irish construction workers engaged in
\textit{Stormwall, 60 ft. long on Kennebec upstream of end of wing (Kamarich 1975)}
a fight and Federal troops were brought in to restore order.
\textit{474.50 - 30' masonry back from ten steps 4 steps east of center}
\textit{474.60 - Brick factory buildings to north (also Kamarich company)}
\textit{100.23 474.86 CULVERT 129 Constructed 1833-34. The semi}
circular arch is cut limestone with a 6 ft. span and a 3 ft.
rise. On the face of the arch are 10 ringstones and a key-
stone.

\begin{itemize}
\item Abutments are 2 ft. high and the coping is at the top of the arch.
\item There is a 20 ft. embankment above the arch.
\end{itemize}
1834 - Jan 20 - Rest above month of Oregon
400 settlers, principally discharged men
2 companies of militia from Napoleon
35 killed, 246 wounded

1835 - Contracts prohibit liquor on stations.
100.69 475.38 CULVERT 131 Constructed 1833-34. The semi-circular arch is cut limestone with a 6 ft. span and a 2 ft. rise. 16 ringstones and a keystone are in the face of the arch. The parapet and coping are 4 ft. high. Abutments are 2 ft. high. A 20 ft. embankment is above the coping.

MP 101 475.75

101.00 475.68 (E-end) HAGERSTOWN RESERVOIR The high embankment to the north contains the reservoir. Water is pumped from the Potomac River. The structure was constructed in 1925 with later enlargements. Parking, picnic tables.

101.04 475.85 CULVERT 131 Original construction 1833-34. The culvert is now a concrete pipe, 2 ft. in diameter with an overflow standpipe on the berm.

101.18 475.45 Jordan July 14, 1850 476.22 - say Astley, steeplehead gravel train; two others to 476.38

476.80 - 486.70 CULVERT 134 - begun on embankment 1934.

102.00 476.70 CULVERT 134 Constructed 1833-34. The circular arch is cut limestone with a 6 ft. span and a 3 ft. rise. 16 ringstones and a keystone are in the face of the arch. The parapet and coping are 4 ft. high. Abutments are 2 ft. high. A 20 ft. embankment is above the coping.

476.55 Steeplehead gravel, remains of old waterway passing over on berm 200 ft. along canal. Old culvert? 3 steeplehead gravel in 180 ft. zone along property. (310)
ft. rise. 10 ringstones and a keystone are in the face of the arch. The parapet and coping are 2 to 4 ft. high. The top of the coping sloped down to the west. Wings, parapet and spandrels are coursed limestone rubble. There is a 20 ft. embankment above the coping. Three timbers of the footing are washed out and exposed on the river side of the culvert. The west wing wall is also bulging. Extensive outcrops of Martinsburg Shale are in cuts along the Western Maryland Railway on the hillside to the north.

1832-33 during construction of the canal, two temporary bridges were placed across the Potomac River in this area to obtain embankment material from Virginia. The bridges were swept away by the flood of January 14, 1834 and were not replaced. Canal Company records indicate that stop-gate was in this section of canal but no evidence remains of it today.
OUTCROP A ledge of Chambersburg Limestone is on the berm. The beds strike N15°E and dip 70°ESE.

The exposure consists of dark gray cobbly limestone thrust eastward over the Martinsburg shale. Ledges to the west are massive, dark gray to black, dense limestone with some laminated beds. The limestone is part of the New Market Formation.

Diagram of Pinesburg Section original draft 6" x 18", final 2" x 6" from Sands and Neuman- GSA.

PINESBURG QUARRY An opening in ledge along the berm connects the quarry and the canal. Water pipes carrying water pumped from the river to the quarry cross the canal here. The ledges on the berm are Row Park Formation, light gray, fine grained to dense interbedded limestone and dolomite. Some of the calcite blebs in the shape of teardrops, other beds are pebbly. The limestone weathers to a light gray, chalky surfaces. The limestone has smooth
Figure 5. Profile of Ordovician rocks exposed at Stop 1 along Chesapeake and Ohio Canal between Pinesburg Station and Millers Bend, Washington County, Maryland. Thicknesses of formations as shown are not true thicknesses owing to angular relationships between traverse directions and strike of bedding. Localities A to I are approximately located.
FIGURE 17. Section through Beekmantown along Chesapeake and Ohio Canal at Pinesburg Station (Measured by R. Neuman).
Acting of Martin staging place in cut, along W. By on hillside at end of bottom land near Purdyburg Station.

MP 101 - at west end of Kentucky Furnace.

Green Spring Furnace

Furnace dump.
3 large logs on east side Court Rd. Ender 0.1 mile along and make fire from railroad tracks on north end. Edge red pig, large chunky gray ash. Soutrose hidden in remains

McCoy Ferry Campground

Parking, picnic, toilet, water from spring.

Fort Davidson

Spring, fields in camp ground
Indicator falls - seasonal. Self-guiding trail
Picnic area - water fountain.
faces along joint surfaces and the dolomite beds highly fractured. The strike of beds is N12°W and the dip 20°E at east decreasing to apparently horizontal to the west (actual dip is 5° to the north)(Neuman, 1951).

102.44 CLIFF ON BERM Pinesburg Station Dolomite,
fine to medium grained, gray to dark gray in beds up to 5 ft. thick forms a high cliff on the berm. Beds with laminations are common. White and black chert in bend and nodules is present. The beds strike N5°E to N5°W and dip 25° to 45°E increasing westward.

102.58 477.32 CULVERT 135 Constructed 1833-34. The semi-
circular arch is cut limestone with a 6 ft. span and a 3 ft. rise. 10 ringstones and a keystone are in the face of the arch. The parapet and coping are 4 ft. high and the abutment is 6 ft. high. Wing walls are at right angles to the culvert face. Spandrels, parapet and wings are coursed
limestone rubble. A 10 ft. embankment is above the coping. Ledges of Pinesburg Station Dolomite are west of the culvert with beds striking N15°E and dipping 70°ESE.

102.64-103.10 **OUTCROP** 75 to 100 ft. cliffs are on the berm. The eastern third of the outcrop (102.64-102.77) is dominantly light gray, mottled, laminated dolomite with interbedded light gray to blue gray, fine grained limestone (Rockdale Run Formation). Agal masses are common with a prominent one at the east end. Some regular chert is in the limestone. Thick dolomite beds are near the west end. The western part of the outcrop is argillaceous limestone with interbedded dolomite; white and black chert nodules are common. Beds are up to 6 ft. thick, laminated with small folds in the laminae. Some algal masses are present. The beds strike N15°E and dip 80° to 82°ESE (Sando, 1957). The Pinesburg Cave (102.74) is near the top of the cliff on the west side of narrow steep ravine. It is a small
passage about 45 ft. long.

103.16

CULVERT 135 1/2 Constructed 1834-35. The

semicircular arch is cut gray limestone. The span is 4 ft.

with a 2 ft. rise. 8 ringstones and a keystone are in the

face of the arch. The abutment is 10 ft. high. Wings are

at right angles to culvert face. The parapet and coping

are 4 ft. high. Spandrels, wings, and parapet are coursed

limestone rubble. A 10 ft. embankment is above the coping.

103.1 Site of Rhodes Warehouse, 20 ft. from canal on berm - no longer standing.

103.20-103-32 OUTCROP Low ledges on the berm of

Rockdale Run Formation extending to 130.26. To west is

Stonehenge Limestone which is light and pebble conglomerate

zones are present. The beds are knobby, about 1 ft. thick

and strike N40°E, dip 76°SE at east end. 250 ft. west at a

small ravine, is an anticline, overturned to the east. Here

the strike is N45°E and the dip 75°NW (overturned) on the

east limb. The strike is N40°E and the dip is 37°NW on the

at east end of Humm's geologic section.
Short stone wall on berm at valley end of geologic section. West of section, poor outcrop; strata parallel to canal; dip 60° towards canal. Limestone bluffs end at house at 478.10.

West limb. Stonehenge Limestone on the west limb crops out to 103.32.

103.32 SITE OF WHARF A wharf was formerly on the berm. A boom is on the towing path side of the canal at this point.

103.42 478.10 Dock & basin, Section Head quarters.

103.50 478.35 OUTCROP A prominent cliff on the West Virginia side of the river is formed of Rockdale Run Limestone. Beds strike N40°E and dip 60°SE. Upstream and to the west of the towing path are 4 levels of gravel-strewn terraces continuing around Millers Bend.

Diagram of terraces 8" x 10 1/2, reduced to 4" x 2"

104.40 OUTCROP Cliffs 100 to 150 ft. high on upper part of the cliff. The beds are 10 to 20 ft. thick.

104.61 479.39 Bridgewark,veg path to river - A Year 1975.
PIERS OF RAILROAD BRIDGE The Charlton Branch. Western Maryland Railway formerly crossed bridge here and connected with Nestles Quarry on West Virginia side of river. 11 concrete piers, formerly carried 12 deck plate girder spans, each 100 ft. long. The piers are 42 ft. high above low water level, 23 ft. higher than the towing path. The bridge was built 1912-1913 and dismantled in

OUTCROP ON BERM The ledges are formed of gray limestone, Rockdale Run Formation.

OUTCROP ON BERM Ledges of Stonehenge Limestone are on the berm. The beds are 1 ft. thick and strike N42°E, dip 66°SE.

WASTE WEIR This structure is a concrete frame with 3 gates for board inserts. This structure is mislaid, or waste weir in this section (481.92').

CULVERT 136 LITTLE CONOCOCHAGUE CREEK, constructed 1833-34. The semicircular arch is cut limestone
Figure 13.—Sketch Map of Geologic Section at Charlton

Key:
- Fence
- Traverse line
- Formation contact
- Member contact
- Cryptozoan chart
- Cryptozoan limestone bed
- Quaternary terrace gravel

Scale 500 feet
with a 20 ft. span and a 10 ft. rise. 30 ringstones and a keystone are in the face above water level. The parapet is up to 8 ft. high. The top of the parapet slopes and there is no coping. The wings on both sides of the culvert are flared. Spandrels, parapet, and wings are coursed limestone rubble. A 4 ft. embankment is above the stonework. The culvert was seriously damaged by a freshet in 1926. Limestone, Conococheague Formation, crops out in the stream bed on the berm. The rock beds are 1 to 5 ft. thick and strike N55°E, dip 45°NW. Musselkauffs (Clarks) Mill was formerly 1,500 ft. up Conocheague Creek. A low gravel-strewn terrace on berm extends for one-half mile to the west of the culvert.

105.64 Middle Kent Cemetery, 270 ft. from berm; on hill 50 ft. above canal
MP 106.4 - 482.35
106.17 Leading basin; not seen (1975) Ogee and Scur
106.28 Charles Mill, house intact on berm - (check for correct name).
106.61 482.36 WASTE WEIR This structure is a concrete frame
Concrete apron at right angle, both sides; 10 ft. long on quoin sides; 20 ft. long
run out
with 3 gates for board inserts.

106.61-106.78 REVETMENT A large pile of river cobbles

(323)
and boulders, up to 1 ft. diameter, are on the river side of the towing path. Near Dam no. 5 and at the east near the waste weir the revetment is coursed limestone.

Diagram plan on land

106.78 (106,40) DAM no. 5 Constructed 1833-35. It was originally a timber crib dam filled with stone, similar to Concrete wall across head of lock at Dam no. 5, constructed 1856. the original Dam no. 4. The remains of the original dam are submerged directly behind the present dam. The original dam was 706 ft. long and 16 ft. high with a front slope 1 ft. vertical to 1 1/2 horizontal and a backslope 1 ft. vertical to 2 ft. horizontal. The dam cost $66,533 and the guard lock $8,428. A temporary lock and culvert on the West Virginia side for water supply to a mill added $6,963 to the cost. The dam was breached in 1840 and the abutment on the West Virginia side was washed out in 1847. The dam was extensively rebuilt in 1854. A freshet in February, 1857 swept away 500 ft. of the dam and repairs were swept away in April and May, 1857. Temporary cribs were set to
fill the breach. A masonry dam was started in 1857. Lime-
stone for this dam was from a quarry near the West Virginia
abutment. The guard lock was washed out in 1859. The West
Virginia abutment was carried away in 1860 and rebuilt.
The Confederates tried unsuccessfully to breach the dam on
December 17 and 20, 1861 by diverting the river around the
West Virginia abutment. Floods in 1862 swept away the
temporary cribbing in the old dam. Much of the new masonry
was swept away in the freshet of 1866 and some masonry was
lost in the flood of 1867. The masonry dam was completed
in 1873 after delays from the Civil War during which the
contractor, William Brown, was arrested and held at Ft.
McHenry several months on trumped-up charges of treason.
The masonry dam cost $205,000 and is 206 ft. long, 21 to 22
ft. high with a crest 12 ft. wide. The dam has a curve
towards downstream on the West Virginia side. The dam and
guard lock are constructed of coursed rubble of Conocochague
limestone, faced with rough, hammer-dressed blocks. The abutments are rubble limestone masonry laid in mortar. The flood of 1877 severely damaged the abutments. The West Virginia abutment was rebuilt in 1891. The power plant on the West Virginia side was installed by the Martinsburg Power Company in 1917 and is now operated by the Potomac Edison Company. The power house is brick on a concrete base. The pool behind dam is 6 miles long. The guard lock is constructed of limestone. For almost 20 years after the canal was opened a ledge of limestone above the upper recess caused boats to ground. It was blasted out in 1856. There is no breast wall in the lock. A pivot bridge was built over the guard lock in 1838. The towing path cross-over bridge was formerly at the head of the lock. The remains of an old crib fender, 15 ft. long, is at the lower end of the lock. The flume is on the berm side of the lock with a concrete stop gate at the head. The lockhouse is
on the hill on the berm side of the guard lock. It is a

1 1/2 story, whitewashed brick structure, on rubble
foundation; constructed in 1837. A wall of coursed lime-
stone rubble is on the towing path from the abutment of
the dam downstream for 250 ft. The inner and outer faces
of the wall slope 45° and the wall has partly collapsed
75 ft. from the dam.

An outcrop of limestone of the Conococheague Formation
is on the berm at the guard lock. It is well-bedded and
the beds strike N45°E and dip 70°SE.

Above Dam no. 5 boats used the canal formed by an em-
bankment along shore of pool for 1200 ft. and then entered slackwater in the pool for 0.4 miles. The towing path
along the bank of the pool was constructed in 1837-38.
The canal was opened to Dam no. 5 in April, 1835.
McCoy's Ferry Stop Lock

Slot: 3½ x 3" deep in lower 5 ft; 2" x 3" deep in upper 2 ft.

Masonry is limestone blocks and headers of sandstone.

A: round hole 6" diameter, in horizontal timber, 1½ ft. below 4½ of coping.
70 paces - dam 5 to lower end of foundations.

Lower end lock to footbridge 9 paces
footbridge +40 paces
Lower end footbridge to lower end revetment wall +78 paces
to lower end of boulders and liners blocks
of loose revetment +150 paces

There are notches for bitches (chirpings) across
lower end of flume = old shed.
Plan of dam- 8^h x 10^w, 3^h x 4^w final

106.78-106.87 (106.40-106.49) OUTCROP Ledges along the towing path are
formed of dark gray to black, dense limestone (Conococheague Formation). A pile of river-worn cobbles and boulders fill a pocket in the limestone at 106.82. A low ledge of limestone with beds 1/2 to 2 ft. thick is at 106.85. The limestone has a prominent slickensided plane indicating that rock on the east side of the plane moved up with respect to that on the west. A small solution cavity is at the level of the towing path in this ledge.

106.90 OUTCROP A prominent cliff is on the river edge. On the downstream side there is an alcove with small solution openings containing orange brown silt; one opening is 10 ft. wide, 3 ft. high and connects with a small,
low passage trending northeast for 60 ft. from the entrance. A solution cavity in the face of the cliff, 5 ft. in diameter, 15 ft. long, is connected to a gravel filled fissure sloping upstream. The limestone is dark gray, fine grained with calcite veins, parallel to the beds. Beds are 1/2 to 3 ft. thick and strike N10°W, dip 70-80°E. to vertical. Small solution caves are in the alcove to north of the cliff.

106.96-106.99 OUTCROP A cliff 40 ft. high juts out into river at this point. It is formed of limestone of the Rockdale Run Formation on the east (downstream) side of the cliff and Stonehenge Limestone on the upstream side. The limestone is dark gray to black, dense in irregular wavy beds about 1 ft. thick with thin, brown wavy clay layers and calcite streaks. The beds strike N10°E. Joints strike N75°W, dip 85°SW; N50°W, dip 70°SW; N50°W, dip 65°NE; N80°W,
dip 20°SW; N80°W, dip 20°NE. A small solution opening is at towing path level at the south end of the cliff and a fissure cave dipping 60°NW (upstream) is near the center of the cliff. It is 2 to 10 ft. wide, 20 ft. long, with a room 10 ft. in diameter, at the top. The fissure contains orange-brown silt. Dangerous loose rocks are in the room. Red stained slickensides below the fissure show horizontal movement with upstream side of the plane moved north with respect to the downstream side. A small keyhole-shaped solution opening is at the north end of the cliff at the level of the towing path. Caves in this cliff and one to the south are known as Two Locks Caves (Franz-Sliker 1971, p. 100). Small solution openings are along the towing path in the alcove northwest of the cliff.

107.15 LOCK 45 7 ft. lift, constructed 1833-36. This is an outlet lock connecting the canal with the pool behind Dam no. 5. It is constructed of hammer-dressed limestone.
with a concrete coping. Much of the lock is covered by silt deposited from high water. The towing path is on the land side (berm) of lock. Low ledges of Stonehenge Lime-
stone are on berm grading west (between Locks 45 and 46) into limestones of the Conococheague Formation. The beds strike N40°E and dip 45°SE.

...Sketch plan on hand...

107.43 \(\text{lock } 46 \) 7 ft. lift, constructed 1836-39. The face is hammer-dressed limestone. A culvert with a semi-
circular arch with a span of 8 ft. crosses the flume on the berm. It is constructed of limestone and served as an abutment for the towing path crossover bridge. 10 ring-
stones and a keystone are in the arch. The abutment is 1 ft. high and the parapet is 3 ft. high. The bridge was 8 ft., 6 inches above the coping of the lock on the berm and 8 ft. on the towing path (river) side of the lock. An in-
clined approach to the bridge is on the towing path side of...
Lock 46 - cont.

 Archbishop culvert under casem in 1/2in.

1/2 in. Arch 8 ft. span x 4 rise, circular.
the lock. It is 90 ft. long. The bridge was a timber, queen-post truss. A pivot bridge, constructed in 1838, also was over lock. The spillway to the flume is on the face of the flume 15 ft. from lock, 5 ft. wide.

lock, berm side, and is an overfall 8 ft. high. The lock-

house on the berm side is 1 1/2 story brick on a limestone foundation. It was constructed in 1837. Steels Warehouse was formerly on the berm near Lock 46.

The walls and spillway are dressed limestone. The abut-

tment of the spillway rises 2 ft. above the spillway. The overfall is 70 ft. long. There is a good view of the flood plain on the West Virginia shore at this point.

A limestone bluff on the berm is formed of limestone, Conococheague Formation. The east part is massive and the west part thin-bedded with chert zones up to a foot thick. The beds strike N40°E and dip 50°SE.
Overfall - 448/450 pass above (upstream) 1
Lock 46...
Profile of section 107.75-108.44
8h x 14w original = 4h x 7w final- arrange sideways on page.

107.73 OUTCROP A small limestone bluff is on the berm. Beds of the Conococheague Formation strike N20°E and dip 80°SE. A prominent joint strikes N70°E and dips 10°N.

107.93-107.99 CULVERT A 3/2 ft. ceramic pipe with a limestone rubble collar; carries drainage beneath the canal.

107.93-108.13 OUTCROP Low ledges of limestone (Conococheague Formation) are on the berm. The beds are 1/2 to 10 ft. thick and strike N70°E, dip 57° to 70°N. A cave opening 4 ft. high, 3 ft. wide is at 180.03.

108.19 CULVERT 138 CAMP SPRING RUN, CHARLES MILL

Constructed 1835-38. The coping and arch of the culvert are cut limestone. The arch has an 8 ft. span with a 4 ft. rise and has 10 ringstones and a keystone on the face.
of the arch. The parapet and coping are 3 ft. high. Wing walls are at right angles to the culvert face. Spandrels, parapet and wingwalls are wavy-banded, calcite-gashed limestone. A 5 ft. embankment is above the coping. Ruins of Charles Mill are on the berm. The mill was constructed 1807 and operated until 1924. The east part was a flour mill originally 2 1/2 stories high. The lower part was built of stone. The timber second story has now fallen. The west part was a plaster mill. It was a two story, masonry building. The roof and walls are now collapsed. A 20 ft. steel water wheel is in place.

108.19-108.44 OUTCROP ON BERM Ledges of limestone (Conococheague Formation) form low bluffs. The limestone is dark gray to black, thick bedded to massive. The beds strike N40°E, dip 45° to 60°NW to center of a syncline at 108.23; dip is 25° to 30°SE on the west limb of the syncline. Orange clay stains the ledges at solution openings.
at 108.16. A small cave opening is at 108.08. Prismatic jointing in the beds is prominent at the center and the west end of the outcrop. Rubble masonry walls are along the towing path.

108.49 ROC IRON BRIDGE ON BERM AND STONE DOCK 300 ft. long, 80 ft. wide overmound.

108.71 LOCK 47 8 1/4 ft. lift, constructed 1835-38.

The face is hammer dressed limestone from Prather's quarry, 1 mile south. Some red sandstone slabs are in the limestone flume. 15 ft. wide, spillway at berm end. 5' wide. 2 ft. deep, 30 ft. long.

revetment wall on the berm below the lock. Wall on towpath at berm: 25 ft. long, flume and then 5 1/4 ft. long along towpath. 20 ft. long wall on towpath upper end.

Dry dock at lock - upper end of flume.

108.78 LOCK 48 8 1/4 ft. lift, constructed 1835-38.

The face is hammer-dressed limestone from Prather's quarry.

The lock is built over a sinkhole and it began sinking in 1839. The foundations were rebuilt and the face of the chamber trimmed in 1870. The lower half of the chamber now sags inward 2 ft. on each side and is held up by heavy timber bracing in the chamber. The rubble foundations on the berm formerly supported a building built over the flume.

flume 8 1/2 ft. on berm; 10 ft. wide; spillway at front: 1 1/4 ft. wide.
Revetment: of coursed limestone is on the berm and towing
26½ ft. flare on towing path, 75½ ft. along towpath edge
path between Locks 48 and 49.

108.82 CULVERT 139 Constructed 1835-38, road culvert.

This culvert carries Neck Road under the canal. The coping
and segmental arch is cut, wavy-banded limestone with a 12
ft. span and a 4 ft. rise. 14 ringstones and a keystone
are in the face of the arch. The abutments and skewbacks
are 6 ft. high and the parapet and coping are 5 ft. high.
Wing walls are flared. Spandrels, wingwalls and parapet
are coursed limestone rubble masonry. A 12 ft. embankment
is above coping. Lockhouse on berm? no evidence.

108.36 LOCK 49 8 1/4 ft. lift, constructed 1836-38.
The face is hammer-dressed, wavy-banded limestone from
Prather's quarry. There is limestone pavement in the canal
bed for 30 ft. below lock with the blocks laid vertically
across the prism. The flume is on the berm 15 ft. from
the lock. The spillway of the flume is at the front of
the lock. It is 2 ft. deep, 10 ft. wide, with a 15 ft.
drop. The recesses have prominent subrecesses, 6 inches
deep and 6 ft. high. Rotted 1 ft. x 1 ft. cross timber
footing spaced 2 ft., and a wooden base are exposed in the
chamber for 15 ft. down from the upper recess. At the end
of the timber is a 1 ft. drop to a rubble stone base. The
foundations on the berm adjacent to the flume are possibly
from a former dry dock. The lockhouse for Four Locks is
on the road on berm side. It is a 2 story brick structure
constructed in 1837-39. A Section House is 100 ft. east
of the towing path. It is 2 stories, frame and shingle
covered. A 2 story supply house, granary and barn were
maintained near Lock 49 until 1924 by the Canal Towage
Company. Well 40 ft. long on sum turn; 15 ft. head wall 806 ft. wall
along trough at barn and 120 ft.; 175 ft. long wall 80 ft. high 90 ft. log
wall on upper end of channel, lock side; 1/2 ft. thick concrete wall 90 ft. high.

108.91 LOCK 50 8 1/4 ft. lift, constructed 1836-38.

The facing is hammer-dressed limestone from Prather's
quarry. Some limestone in the breast wall has polygonal
joints. Slots for a stop gate are above the breast wall.

The flume on the berm is 20 ft. from the lock. The lower 30 ft. of the flume is in a concrete trough 4 ft. wide and 3 to 6 ft. deep with a spillway 6 ft. wide, 4 ft. deep, and a 6 ft. drop at the lower face of the lock. A revetment wall of limestone and some shale blocks is on the berm between Locks 49 and 50. The lockhouse for lock 50 is a 1 1/2 story, clapboard structure on the berm across the road from the lock. A white-washed frame lock shanty is at the upper end of the lock on the berm. A timber and clapboard mule barn is on the berm 100 ft. upstream from the lock. The pivot bridge over the lock was burned by the Confederates in July, 1864. The lock was the scene of riots in January, 1836. Other bloody riots occurred at Locks 48 to 50 in mid-May 1838. The laborers seized and threatened to blow up the works unless back wages were paid. The militia was called in and blasting powder re-
moved to and stored in the public square of Hagerstown much to the annoyance of the citizens of that town.

108.97 OUTCROP ON TOWING PATH The thick bedded limestone is part of the Conococheague Formation. Irregular chert zones up to an inch thick are present. Joints strike N50°W, dip 70°SW; N40°E, dip 70°NW. Sinkholes are a problem in this area. In the early days of the canal, engineers planned to line the prism with timber above Lock 50 to reduce leakage into the sinkholes and limestone fissures.

Mule barn along towing path; upper end of lock 50 on basin, continues upstream.

109 OUTCROP ALONG TOWING PATH A low ledge is formed of gray, thick bedded limestone, Conococheague Formation.

The surface of the outcrop is pitted by solution. Irregular bedding occurs around chert nodules. The strike of beds is N50°E, dip 15°NW; joints strike N65°W, dip 70°NNE; N40°E, dip 70°NW. Limestone also forms a ledge 10 ft. above the towing path and solution grooves up to a foot deep and 2 ft.
wide are prominent in this outcrop.

109.36 **WASTE WEIR** Original overfall constructed 1836-48. The present structure, on east side of towing path, is a concrete frame with 3 gates; 2 iron paddles, each 3 x 4 ft., frame 16 ft. wide, from 15 ft. ends. Well along both frame and towing siding ft. are in the frame. Slot openings for boards are above the paddles and in the third gate. The channel south of the weir is lined with coursed limestone rubble. A concrete slab bridge with limestone abutments carries the towing path over the waste channel. Solution ribs with up to 1/4 inch relief are on the abutment blocks.

486.00 **Rundament on south side of towing path at corner just upstream of waste weir.**

109.42-109.77 **OUTCROP ON BERM** Low ledges are formed of limestone of the Conococheague Formation. The limestone is calcitic, dense gray to black, and the beds are 1/2 to 2 ft. There are occasional beds about 1 ft. thick of gray limestone. A zone of black chert 1 ft. thick is in the west part of the outcrop. The beds strike N20°E and dip
vertical on the east and 60°ESE on west end. From here to
McCoys Ferry limestone sinkholes in the bed of the canal
are serious problems. Several recent subsidences are on
the berm. A flood plain and terraces rising to 160 ft.
above river are prominent on the West Virginia side of
the river.

(109.83) (109.66) CULVERT 140 Constructed 1835-37. This
is a road culvert 106 ft. long. The coping and arch are
cut limestone. The semicircular arch has 10 ft. span and
a 5 ft. rise. 14 ringstones and a keystone are in the face
of the arch. The keystone is 1 1/2 ft. wide at top and 1
ft. wide at the base. The abutments are 5 ft. high. The
parapet and coping are also 5 ft. high. Wing walls are
flared and the downstream wing has collapsed. Pavement in
the culvert is 3 tiers high at the face and consists of 7
blocks, 3 x 3 x 1 1/2 ft. laid on end. The pavement 4 ft.

(358)
The parapet, spandrels and wing-walls are dark gray to black, dense, coursed limestone rubble. An embankment 5 ft. high is above the coping.

109.91 (109.74) OUTCROP ON BERM A ledge is made of limestone of the Conococheague Formation. The beds strike N40°E and dip 74°SE.

110.00 (109.81) CULVERT 141 Constructed 1835-37. The coping and arch are cut limestone. The arch has a 2 ft. span and 2 ft. rise. 8 ringstones and keystone are in the face of the arch. The abutments are 2 ft. high. The parapet and coping are 15 ft. high. Wing walls are slightly flared. Spandrels, parapet and wing walls are coursed rubble of dense gray limestone. An 8 ft. embankment is above the coping. The east end of the McCoys Ferry Recreation area is at the culvert.

110.20 (110.01) Four sinkholes are in the canal bed, each
STOP GATE

Diagram on hand

110.24 (110.05) STOP GATE

Constructed 1838. The stop

at 486.75

Sinkholes also at MP110 in prism.

SarrkCIIIe.S.

gate is faced with hammer-dressed limestone. The structure

is 20 ft. long and 17 ft. wide with a recess 1½ ft. long.

There is a notch, 2 inches wide, 5 inches deep, for planks

at the lower end. An outcrop of Tuscarora Quartzite with

shale partings forms a low ledge on the berm. The rock is

highly cleaved and fractured. Beds strike N35°E and dip

45°SE. The structure is overturned towards the west. Olive-

gray shale, Rose Hill Formation is at the west end of the

ledge. The North Mountain Fault is just east of the out-

crop. The Tuscarora Quartzite also exposed in the Western

Maryland Railway cut above the ledge. Here, 20 ft. of

brown sandy shale is underlain by red iron shaly sandstone,

10 ft. thick, and olive shale of which 10 ft. is exposed.

DO NOT TRESPASS ON THE RAILROAD, IT IS DANGEROUS AND ILLEGAL.
WESTERN MARYLAND TRAINS APPROACH QUIETLY AND FAST, VISIBILITY
IS LIMITED BY CURVES AND CUTS.
1837, partly rebuilt 1839. The coping and segmental arch are cut wavy-banded limestone. The arch has a 12 ft. span and a 4 ft. rise. 14 ringstones and a keystone are in the face of the arch. The abutments are 8 ft. high. Buttresses on the berm side, 12 ft. long, 8 ft. thick, flank the culvert and extend to the coping. The face of the buttresses is battered 1 on 3. Spandrels, parapet and buttresses are hammer-dressed limestone except for concrete repairs in the arch and spandrel on the towing path side. Old blocks from the repaired area are now on the side of the road. A 10 ft. embankment is above the coping.

During construction of canal in 1835-36, a warehouse for storage of cement was at McCoys Ferry. On July 29, 1864, Confederate troops under the command of McCausland and Johnson crossed the Potomac River at McCoys Ferry en route to a raid on Chambersburg, Pa. The Western Maryland Railway
trestle (Bridge no. 1018) to the north of the culvert is a 2 track, deck, plate girder trestle on two bents and 4 towers. It was built in 1929 by the McClintic Marshall Company, Pittsburgh, Pa., to replace an older structure. A prominent cliff of Tuscarora Quartzite is on the West Virginia shore of the river.

110.39 (110.20) CULVERT 143 GREEN SPRING RUN Constructed 1835-37. The coping and semicircular arch are cut, wavy-banded limestone. The arch has an 6 ft. span and a 3/4 ft. rise. There are 8 ringstones and a prominent keystone in the face of the arch. The abutments are 6 ft. high and the parapet and coping are 2 ft. high. Wing walls are at right angles to the face of the culvert. Spandrels, parapet and wing walls are hammer-dressed, gray, wavy-banded limestone. A coursed limestone rubble wall, 8 ft. high, is above the culvert on the towing path side. A limestone retaining wall extends from culvert 142 to culvert 143 on the berm.
110.80 (110.62) CULVERT 144 Constructed 1836-38. The coping and semicircular arch are cut limestone. The arch has an 3/4 ft. span and a 3/4 ft. rise. 10 ringstones and key-stone are in the face of the arch. The abutments are 1 ft. high and the parapet and coping are 15 ft. high. Spandrels and parapet are dressed black limestone. A 10 ft. embank-ment is above the coping. 20\sqrt{20} \text{ temp:}

10-

MP 111 487.89

110.90-111.12 TERRACE ON BERM A gravel covered bench is 40 ft. above river. The canal was built along the front of this terrace, 20 to 30 ft. above low flood plain on the river side.

111.20 (111.00) The canal is on a high flood plain from Ft Frederick in this area of flood plain here to west of Big Pool.

111.25 Body drain on bench; new grown over.

111.34 (111.14) CULVERT 145 Constructed 1837-38. The semicircular arch has a 6 ft. span and 3 ft. rise. 10 ring-stones and a keystone are in the face of the arch. The
coping and arch are cut black, dense limestone. The abut-
ments are 1 ft. high and the parapet and coping are 5 ft.
high. Spandrels, wings and parapet are banded limestone,
trimmed rubble. 10' __/ 10' wings.

112.10 (11.90) CULVERT 147 Constructed 1837-38. The
semicircular arch has a \(\frac{3}{4} \) ft. span and 2 \(\frac{1}{2} \) ft. rise. The
8 ringstones and a keystone in the face of the arch are cut,
dark limestone. The abutments are 3 ft. high and the para-
pet and coping are 6 ft. high. They are dressed limestone
8 ft. embankment on top coping.
rubble. The wings are limestone and pebbly sandstone rubble
Large rounded, sandstone boulders, up to 3 ft. in diameter,
are in flood plain deposits below the mouth of the culvert.

112.20 (112.04) CULVERT 148 Constructed 1837-38 The semi-
circular arch has a 6 ft. span and 3 ft. rise. 10 ringstones
and a keystone in the arch are cut, dark gray, medium grain
ed limestone. The parapet and coping are 2 ft. high. A 10
foot embankment is above the coping. The parapet and wings
stop lock is built of hammer-dressed blocks of Ridgley (Oriskany) sandstone and concrete. The lock is 20 ft. long; 17 ft. wide and 7 ft. deep. A plank bridge now carries a road across the lock. A pivot bridge formerly crossed the lock. The stone and concrete piers and anchors with slabs of iron at the west end of lock, are remnants of a fixed timber bridge. The bridge was a queen-post truss on timber pents, 17 ft. above the canal. Some red sandstone rubble revetment is along the canal west of the stop lock. Ft. Frederick, 1,500 ft. north of canal, was built in 1756 during the French and Indian Wars following the defeat of General Braddock near Pittsburgh, Pennsylvania. The stone walls are 20 ft. high and are 240 feet square. It was abandoned in 1791 but was reoccupied in 1861 during the Civil War.
In 1922 it was purchased by the State of Maryland at which time the walls were a pile of rubble. The walls and bastion were restored in 1934 and the State Park now covers 279 acres.

112.50 (112.32) SOUTHEAST END OF BIG POOL This is an area of widewater, 1 1/2 miles long and up to 700 ft. wide. It was formed by placing the towing path embankment across low swampy ground. The rubble revetment along the towing path contains red sandstone from the (Jennings) Formation and Ridgley (Oriskany) sandstone. After 1900 Big Pool was a popular place for summer cabins, swimming and pleasure boats.

112.75 (112.60) MEADOW ON RIVER SIDE OF CANAL A high flood plain about 20 ft. above the Potomac River is between the canal and river.

113.15 (113.00) OVERFALL (WASTE WEIR 55) The spillway is 1/20 ft. long with a crest 16 ft. wide. The spillway drops
10 ft. on the river side of the towing path. It is faced
with hammer-dressed blocks of Ridgely (Oriskany) Sandstone.

Concrete piers formerly supported a towing path bridge
across the spillway. The spillway controlled the level of
water in Big Pool. Outlets on downstream end, 10 ft. wide x 8 ft. high to back,
with abutment on the dam. Wall at right angle on top at
upstream end, 10 ft. long.

113.86 (113.64) Upper end of Big Pool
490.72

The original bridge was built in 1892 by the Potomac
Valley RR, a subsidiary of the Western Maryland Railway to
connect with the Baltimore and Ohio RR at Cherry Run, W. Va.
The span was through Pratt truss with a timber trestle
connecting with the bridge across the Potomac River. The
present bridge was built by the American Bridge Company, in
1927. It is a skew, modified Baltimore truss over the

(370)
I approach.

A gray to black limestone rubble revetment is west of bridge. A terrace with rounded cobbles is on the berm side of the canal and it rises to 20 ft. above the towing path west of the bridge.

MP114: 490.90

114.18 (114.01) STOP GATE 50 ft. west of milepost 114 (NPS), originally constructed 1838. The structure is concrete with some blocks of cut dark gray, fine grained limestone. The gate chamber is 17 ft. wide and 21 ft. long.

The gate was so arranged that it could drop to the bottom of the canal and would be pulled into position by excess current flow in either direction.

114.27 (114.10) CULVERT 149 Constructed 1837. The coping and semicircular arch are cut, dark gray, fine grained limestone. The arch has a 6 ft. span and a 3 ft. rise. 10 ringstones and a keystone are in the face of the arch.
Coarse rubble is on the inside of arch in the barrel of the culvert. The abutments are 4 ft. high and the parapet and coping are also 4 ft. high. They are built of hammer-dressed limestone. A 6 ft. embankment is above the coping. Wing walls are coursed limestone rubble.

114.35-114.10-114.30) TERRACE ON BERM Water-worn sandstone boulders up to 5 ft. in diameter are on this terrace. The top of the terrace is near the level of the towing path 40 ft. above the river.

114.49 (114.32) CULVERT 150 DRY RUN This road culvert was constructed in 1836-37. The coping and segmental arch are cut dark gray, fine grained limestone. The arch has a 12 ft. span and a 4 ft. rise with 14 ringstones and a keystone in the face. The keystone and several ringstones are cracked. Coarse rubble is in the arch in the barrel of the culvert. The abutments and skewbacks are 8 ft. high. The road through culvert.
parapet and coping are 6 ft. high. Wings, spandrels and parapet are rough, hammer-dressed limestone. A 10 ft. embankment is above the coping.

114.59 (114.42) ERNSTVILLE A terrace is on the berm at the towing path level, 35 to 40 ft. above the river. The terrace rises to 50 and 70 ft. north of canal and extends west to (114.70). The terrace on the river side of the canal is in a low saddle along the terrace. The terrace soil is brown, pebbly-cobbly, silty sand. Bank on embankment from Culvert 156 to 491.32.

114.96 (114.80) CULVERT 151 Constructed 1836-37. The coping and semicircular arch are cut dark gray, fine grained limestone. The arch has a 6 ft. span and 3 ft. rise. There are 10 ringstones and a keystone in the face of the arch. The abutments are 4 1/2 ft. high. The parapet and coping are 3 ft. high. Spandrels, wings and parapet are rough-trimmed limestone. Fossils are prominent on the faces of two sinks on berm, 4' x 12' in all.

(374)
the limestone blocks. Some chert is in the limestone in the spandrels. A 16 ft. embankment is above coping.

115.12 (115.02) CULVERT 152 Constructed 1836-37. The coping and semicircular arch are cut gray, medium grained limestone. 8 ft. span and a 2 1/2 ft. rise with 8 ringstones and a keystone in the face of the arch. The parapet and coping are 3 ft. high. Spandrels and parapet are coursed, trimmed limestone rubble containing black chert lenses up to 8 inches long and 3 to 5 inches thick. A 10 ft. embankment is above the coping. The culvert is silted to the spring line (1971). Sinks in stream between motor and Yewbank, 240 4'x4'. Barn and yard barn filled.

MP 115 491.90

115.52 (115.48) CULVERT 153 Constructed 1837. The coping and semicircular arch are cut limestone. The arch has a 4 ft. span and a 2 ft. rise. Only 4 ringstones and a keystone are visible in the face of the arch (1971). The parapet and coping are 6 ft. high and are coursed limestone rubble. An

10 ft. embankment abov coping.
embankment 10 ft. high is above the coping. The culvert is
silted to the top of the arch (1971). Gravel beds are ex-
posed in the railroad cuts in the terrace to the north of
the canal. Dam no. 5 was originally planned in vicinity
of the culvert but was relocated downstream in 18

116.27 (116.08) LICKING CREEK, No. 6 AQUEDUCT Con-
structed 1835-38, cost $55,220. This is a single arch with
a 90 ft. span and 15 ft. rise. There are 58 ringstones and
a keystone in the arch. The aqueduct is 180 ft. long be-
tween the ends of the wings. The abutment are 7 ft. high.
The parapet is 6 ft. high and is made of two tiers of stone
with blocks up to 6 ft. long and 2 1/2 ft. high. The coping
is 1 ft. high and is 34 ft. above stream and 37.6 ft.
above the foundation. The waterway is 21 ft. wide and 7
ft. deep. The parapet on the towing path side is 7 ft.
thick at the top and 7 1/2 ft. thick at the base. The
parapet on the berm side collapsed but was originally 5 ft.
thick at the top and 5 1/2 ft. thick at the base. The aqueduct is constructed of Tonoloway Limestone from Bains quarry, on Licking Creek, 3/4 mile NNE of the aqueduct. Some limestone is from Prathers Neck. The limestone is gray, knobly with some wavy bands. Arch stones, skewbacks, water table, coping and the inside of parapet are cut, the rest of the stone is coursed, trimmed rubble work. The skewbacks and 5 to 7 ringstones adjacent to the skewbacks are failing from pressure exceeding the compressive strength of the stone. They are highly fractured and crushed. Timber for the old trunk and berm wall are imbedded in the water table. The 10-inch timbers are spaced 3 ft. and set in concrete with coarse limestone aggregate. The timber trunk was placed about 1874 when the masonry berm parapet was removed. The towing path side of the parapet and arch are shoved out of line by 8 inches and iron stay rods are in a tier of blocks below water table to stabilize the faces. The Aqueduct was
Grouted in 1838 with bituminous "American" cement to stop leaks. There is a slot in the concrete at the west end of the aqueduct for a stop gate. Cut faces on the arch stones above normal high water level are deeply etched by solution leaving the less soluble, silicic veins standing 1/8 to 1/2 inch above the weathered surface. Below normal high water level, hammer-dressed and cut faces are scalloped by solution to a depth of an inch. Etching of the cut faces in the waterway are similar to those of the arch stones. The remains of an iron railing are on the lower and upper wings.

Western Maryland Railway bridge no. 1076 is 300 ft. north of the Aqueduct. It has 3 deck plate girder spans.的距离 between里程碑116和117是0.63英里。The coping and segmental arch are cut limestone. The arch has a 6 ft. span and a 2 ft. rise with 6 ringstones and a key-stone in the face. The parapet and coping are 2 1/2 ft. high. The spandrels and parapet are trimmed, coursed lime-
No wing walls

Stone rubble. The culvert is silted and flooded to the top of the arch. The meadow to the south of the canal, extending west to 117.64 (118.0), is a terrace 20 to 25 ft. above river level. Large sink over turn on top path side of prism, 3 ft. dep.; 10 ft. diam.; small sink across canal on head of culvert. (1973)

116.96 (117.09) CULVERT This is a circular concrete culvert, built about 1965, to carry drainage from Interstate Highway 70. 6 ft. span, spring at secu line, no wing.

117.40-118.25 (117.55-118.40) OUTCROP A highway cut on Interstate Highway 70 is in the Chemung Formation. Red shale and interbedded sandstone are exposed near the top of the cut with gray sandstone and shale below. At the west end of the exposure the beds are mainly chocolate brown shale. The cut is in a syncline with the strike N50°E and the dip 14°W on east limb. The strike is N40°E, dip 15° to 28°SE on the west limb.

117.45 (117.61) CULVERT 162 Constructed 1837. The semi
circular arch had a 7 ft. span but is now buried. A small
ravine leads to the river and water surges at the head of
the ravine at the base of the towing path embankment during
heavy rain.

118.00-118.15 (118.15-118.30) **MILLSTONE POINT** The Che-
mung formation is exposed in the Western Maryland Railway
where

- cut, 1 ft. dark gray sandstone, in beds 2 ft. thick, with a
- strike **N40°E** and dip **22° to 35°SE**. A quarry at
 of the canal
- 118.14 (118.29), on the hillside 0.1 mile to north, is in red
- sandstone of the Chemung Formation was the source of stone
 used in culverts 162, 164 and 166.

118.35 (118.50) **CULVERT 164** The original culvert was
constructed in 1837 but is now buried beneath an embankment.

The new culvert, 30 ft. to the west, was constructed to

- Interstate Highway 70 6
- drain I-70 and is a corrugated steel pipe, 8 ft. in diameter,
 No wings
- encased in concrete. Slabs of gray and dark gray fissile
 (Chemung Formation)
- shale are in the embankment below the towing path.
118.36 - Site of Red Tower

118.43 (118.58) OUTCROP A cut on Western Maryland Railway exposes gray shale, Chemung Formation. The beds strike N40°E and dip 15°SE. Partially visible in summer.

118.46 Stone clock on shore: Millstone Point. Course, smooth faced, gray shale, 2 ft. long x 8 ft. high at bottom of gneiss; +100 ft. to 53 outcrop.

118.64-118.73 (118.79-118.88) OUTCROP A cut on the Western Maryland Railway exposes gray, sandy shale of the Chemung Formation. The beds strike N40°E and dip 28°SE. A ledge of sandstone in canal at east end of outcrop; beds 4 in. to 2 ft. thick on the berm of the canal at 118.73 is formed of Parkhead Sandstone, which is coarse-grained, pebbly and gray. White quartz pebbles up to 2 inches in diameter, mainly 1/2 inch diameter, are prominent in the sandstone. The beds are 2 to over 10 ft. thick and strike N40°E, dip 50°SE. 3 prominent joints cut the sandstone. Broken rock from the ledge partially fills the canal bed. A V-shaped barrage in the river is probably the remains of an old fish weir in existence at the time of the Potomac Company.

One-half mile of the Cumberland (National) Road was
moved upslope in 1836-38 to provide room for the canal. It
was moved further upslope in 1903-06 when the Western Rail-
way was constructed between Big Pool and Cumberland. In
the early 1960's the position of the road, then U.S. 40, was
usurped by Interstate Highway 70. During construction of the canal, on
August 8, 1837, a stage coach plunged 40 ft. off the new
road into the canal at Millstone Point. A woman passenger,
his daughter and a man were killed. 4 others were injured.
The accident occurred because the driver fell asleep.

118.61 (118.76) CULVERT 166 AND WASTE WEIR
Constructed
1837-38. The semicircular arch is cut limestone with an 8
ft. span and a 4 ft. rise. 12 ringstones and a keystone
are in the face of the arch. The abutments are 1 ft. high
on the river side. Spandrels and parapet are coursed lime-
stone rubble with 1 cut block of red sandstone from the Che-
mung Formation included. On the berm side, abutments are
6 ft. high and built of sandstone and limestone. A well
between the canal and railroad culverts is lined with coursed gray and red sandstone rubble. A concrete frame waste weir with 3 gates for drop boards is on the berm side of the culvert. 2 in cnt paddles, wall adjusted to back over, 15 ft on east end; 15 ft. wings, red gray limestone and fine ground limestone.

118.64 (118.79) OUTCROP A ledge on the berm is formed of Parkhead Sandstone, Harrell Formation. The beds strike N40°E and dip 15°SE at the east end of the outcrop. The sandstone is up to 20 ft. thick with beds 2 to 10 ft. thick with beds 2 to 10 ft. thick. It is underlain by olive gray shale. On the west the sandstone is gray, dense, forming a ledge 20 ft. high. The strike at the ledge is N50°E. A prominent strike joint dips 60°NW and a transverse joint dips 70°SW.

118.69-118.70 (118.84-118.85) OUTCROP The Chemung Formation, gray shale, strikes N40°E and dips 30°SE on the berm. Pink-brown shale of the Chemung Formation is exposed in a cut on the Western Maryland Railway where it is overlain.
by terrace deposit of cobbly silt.

The meadow on the river side of the towing path is a high flood plain grading westward into a terrace 25-30 ft. above the river. Wash fills canal to within 2 ft. of towing path (1972) at this point. The millstone basin was formerly on berm side of canal here. Old NPS Campground on meadow (1975). Camp had 5 tables,outhouse, feed bunk. Canal full of water, 3 ft. higher top of towpath, 2 ft. lower in towpath at campground, 1/2 ft. from top.

119.69 (119.85) **CULVERT 170 AND WASTE WEIR** Constructed 1835-38. The semicircular arch is cut limestone with a span of 8 ft. and a rise of 4 ft, 12 ringstones and a key-stone are in the face of the arch. Coursed rubble masonry is in the arch in the barrel of the culvert. The parapet and coping are 4 ft. high. The coping is cours ed, trimmed limestone rubble; spandrels and parapet are coursed lime- stone and red sandstone rubble. The waste weir on the berm side of the culvert is a concrete structure with 3 gates for board inserts. The walls of the weir are red
sandstone and limestone. Pavement at the base of the waste
weir is limestone blocks 2 ft. high, 8 inches wide and 2
to 4 ft. long laid on their side. A well between the rail-
road and the canal culverts is 12 ft. square and 16 ft. deep.
The arch on the berm side of the culvert at the well is on
abutments 4 ft. high. Just east of the culvert, a cut on the NNY by
granite on shale.

119.84 (120.00) OUTCROP ON BERM Chemung Formation, olive
gray, fissile sandy shale and sandstone is exposed in a low
ledge. The beds strike N10°E and dip 60°W to vertical.

MP 120 - 35°33'39"

119.87 (120.03) STOP GATE Constructed 1836. The walls
are limestone with concrete in the middle part. Grooves for
the planks of the stop gate are 5 inches wide and 5 inches
wide, one at each end of gate. 20 ft. earthen embankment above
deep. Olive gray shale, Chemung Formation, in beds 2 inches
thick are exposed at the stop gate. They strike N40°E and
dip 85°NW. The outcrop extends 300 ft. west where the dip
is 45°NW. Outcrop, Little Pool west; beds vertical, highly fissured red
shale; strike normal to east 70°W of end of Little Pool

Pebbly concrete, upper end, top part side of
array gate: March 6, 1917

(385)
119.90 (120.05) **LOWER END LITTLE POOL** For 1 mile to the west canal was formed by placing the towing path embankment across two islands. Extensive seepage developed in the embankment in 1837 and much rebuilding was required in 1839.

Serious leakage occurred in 1840-44 and the section was rebuilt in 1844. A revetment of fine grained, dark brown sandstone (Catskill Formation) rubble is along the towing path.

120.40 (120.54) **TERRACE** The West Virginia side of the Potomac River is a high flood plain grading into a terrace 25-35 ft. above the river. The front slope on terrace is prominent because of its steepness.

352.70 H.B.C. - at point striking into pot 352.53 raise on mending, canal runs to east.

120.56 (120.70) **WASTE WEIR** An overfall controlling the levels of Little Pool was formerly in this vicinity. Catskill red sandstone, 36 ft. pass long or west. Rubble 16 ft. pass long, covered rubble with 100' pass on cast into river when proper rises 3'. Well 1', 7' depth just out of current.

120.64 (120.70) **TERRACE** Cobbly, pebbly silt deposits are on the berm above the railroad at levels of 50 to 60 ft. and 100 ft. above the river.
120.87 (121.97) HEAD OF LITTLE POOL A causeway on the berm marks the upper end of the pool. It was formerly the site of a basin. A terrace on the berm is 50 ft. above river.

352.35
354.72
3 MP 121-354.75

120.96-121.23 (121.06-121.33) REVETMENT ON BERM Catskill red sandstone rubble protects the berm embankment.

121.28 (121.38) CULVERT 172 Constructed 1835-36. The semicircular arch is dressed limestone with a 6 ft. span, and a 3 ft. rise. 10 ringstones and a keystone are in the face of the arch. The abutments are 7 ft. high and the parapet and coping are 2 1/2 ft. high. Spandrels and parapet wings are Catskill red sandstone from the quarry on Barnett (Ditch) Run. Rubble in inner arch in the barrel of the culvert has collapsed 4 ft. in from the towing path face. A conical hole, 5 ft. in diameter, is in back of the coping. The floodplain on the river side of the canal has brown clay silt soil over 20 ft. thick.
121.60 (121.70) CULVERT 173 BARNETTS (DITCH) RUN Constructed 1836. The semicircular arch is cut limestone with an 8 ft. span and 4 ft. rise. 12 ringstones and a keystone are in the face. The abutments are 2 1/2 ft. high and the parapet and coping are 1 1/2 ft. high. Spandrels, coping and parapet are Catskill red sandstone from the quarry on Barnetts (Ditch) Run. A 15 ft. embankment is above the coping. Three quarries in Catskill red sandstone were opened about 1836 along Barnetts Run for stone for culverts 172 to 174 and revetments. The first quarry was about 0.46 of a mile from the canal, the second 0.52 mile and third 0.82 mile.

MP 122 351.30/365.76
122.14 (122.31) CULVERT 174 AND WASTE WEIR Constructed 1836-38. The culvert on the towing path side is silted over. On the berm side it has an elliptical arch of cut limestone with a span of 6 ft. and a rise of 2 ft. 10 ringstones and keystone are in the face. The spandrels and wings
are Catskill red sandstone. The waste weir on the berm side
of the culvert is a concrete frame with 3 gates for insert
boards and walls of limestone and Catskill red sandstone.

Red sandstone of the Catskill Formation crops out on the
berm. The beds strike N70°W, dip 20°N in a shallow syncline;
two sets of joints are prominent at right angles and verti-
cal to the beds. The berm is on an embankment from this
berm an embankment, Lock 51 and Culvert 173
berm an embankment, Lock 51 and Culvert 173-174.

122.51 (122.55) CULVERT 175 Constructed 1836. The cul-
vert is silted to the coping (1972). Limestone rubble is
in coping and parapet. Records indicate this structure was
built as a 3 x 4 ft. square drain. A quarry in Catskill
red sandstone, 0.2 mile north of the canal was for stone in
culverts 173, 174 and 175.

122.62 (122.66) LOCK 51 8 ft. lift, constructed 1836-39.

The face is cut limestone (Tonoloway Formation) from Blunts
Quarry on Little Tonoloway Creek, 3 miles upstream from the canal. The limestone has wavy bands 1/4 to 1 inch apart. A film of travertine is on the face of some blocks. Limestone blocks 4 tiers below the coping are pitted and crumbled. Limestone and dense gray sandstone are in the wings and around lock.

The coping is 6 inches higher along the chamber than at the upper recess and in the front of the lock below the lower recess. Subrecesses, 6 ft. high, 4 inches deep, extend the length of the recesses. Vertical slots in the walls above the breast wall are for insert timbers for a stop gate.

There are no indication of fenders at the head or tail of the lock. Blocks of cut limestone with circular quoins are on the side of the towing path. The flume is on the berm side and is lined with brown and white Ridgeley (Oriskany) Sandstone and some limestone. The overfall at the front of the flume is 10 ft. wide, 2 ft. deep with a 10 ft. drop.

The lockhouse is on the side of the towing path at the lower end.
end of the lock. It is constructed of coursed limestone and Catskill red sandstone rubble. A snubbing post is at the lower end of the lock on the towing path. A wall of coursed limestone and Catskill red sandstone rubble is on the berm for 25 ft. below the front of the lock. Lock 51 is the end of the 14-mile level.

122.62-122.89 (122.66-122.93) **TERRACE ON BERM** Gravel silt soil between Locks 51 and 52 form a terrace that rises inland for 150 ft. north of canal.

122.89 (122.93) **LOCK 52** 8 ft. lift, constructed 1836-39.

The face is cut limestone (Tonoloway Formation) from Harts Quarry on Little Tonoloway Creek, 1.20 miles upstream from the canal. Some cut Catskill red sandstone is on the towing path side at the center of the chamber, the flume, 5 ft. deep, 10 ft. wide, is on the berm side, 20 ft. from the lock. It flume on berm, 3 ft. deep, 15 ft. wide, 15 ft. from canal.

is lined with Catskill red sandstone rubble and ends in an overfall at the front of the lock, 6 ft. wide and 2 ft. deep post

(391)
The subrecesses are similar to Lock 51. Slots for boards of a stop gate are in the walls above the breast wall. A pile of rubble, 20 ft. long, on the berm is at the head of the lock and is probably the remains of a fender crib. A footbridge is over the tail of the lock. The lockhouse is on the towing path side. It was formerly a frame structure only the rubble foundation remains. The foundation is primarily cobbles of sandstone, slabs of red and gray sandstone and some limestone. A retaining wall, 150 ft. long, is below the lock on the towing path side. It is coursed limestone rubble. A similar wall extends 25 ft. below the lock on the berm and it contains some red sandstone. Limestone walls are also on the towing path and berm, 180 ft. long, connecting Lock 52 and the aqueduct to west.

122.94 (122.98) GREAT TONOLOWAY (no. 7) AQUEDUCT Constructed 1835-39, cost $48,423.10 including entrance walls. Arch stones, facing and coping are limestone from Harts Quarry on

Each aqueduct being repaired 1975.
Wash rail at aqueduct: 3 gates, no paddle.

MP 123 = 356.15 / 356.78

(392)
Little Tonoloway Creek, 1.34 miles upstream from the canal.

The limestone backing is from along the canal. The **aqueduct** is a single, semicircular, irregular arch with a span of 63 ft. 3 inches and a 20 ft. rise. The springing line is at the top of the abutment, 4 ft. above the stream, on the west. On the east it is on a rock ledge 16 ft. above stream. If fully developed the arch would have a span of 80 ft. There are 30 ringstones on the west of the keystone and 16 on the east. The aqueduct is 152 ft. long between wings. Coping and parapet are 7 ft. high with the coping 36 ft. above the stream and 42.1 ft. above the foundations. An 8-inch belt is at the top of the arch. The parapet was formerly 7 ft. wide at the top and 7 1/2 ft. wide at the base on the towing path side. It was 5 ft. wide at the top and 5 1/2 ft. wide at the base on the berm. The coping and belt are fine dressed limestone. Arches, skewbacks, water table and the inside of the parapet are scabbled limestone. The rest of...
the structure is masonry rubble. The spandrels and ringstones have fallen on the berm on the west part of the aqueduct. Some ringstones on the towing path side have moved about 2 to 4 inches, and numerous ringstones are fractured and crushed. The underside of the arch (intrados) is coated with travertine up to 1/4-inch thick. The base of the waterway was covered with hydraulic cement and bituminous "American" cement in 1838 to reduce leakage. A serious break in the spandrels and parapets occurred in 1865 and iron tie rods were placed above the arch. The stone work at that time was in bad condition. The berm parapet was removed and rebuilt at that time. The berm parapet collapsed in the 1880s and a wooden trunk was put in. The trunk was 90 ft. long, 21 ft. 9 inches wide, 7 ft. high and had 8 vertical posts in the wall separating trunk into 10 sections; 18 base timbers, 1 x 1 ft., spaced 4 ft. on centers, now remain in concrete in the waterway. The berm wall of the
trunk was strong by braces anchored to the base timbers and extending about 4 ft. beyond the wall. The towing path was placed on a trestle bridge along side of the trunk. The present footbridge on the towing path at the east end of the aqueduct. Remnants of the iron railing are on the east and west wings of the aqueduct. The lead fill shows in the heads on some of the posts. A waste weir with a concrete frame for 3 gates and board inserts is on the berm at the east end of the aqueduct. An outcrop of the Catskill Formation is beneath the east part of the aqueduct. 24 ft of red sandstone overlain by 5 ft. of gray, fine-grained sandstone is exposed. The beds strike N32°E and dip 42°SE.

Western Maryland Railway bridge no. 1144 is 500 ft. to the north. It is a 3 span, deck plate girder bridge on skew piers and was built in 1904 by the Pennsylvania Steel co., Steelton, Pa.

123.05-123.23 (123.08-123.26) OUTCROP Intermittent
exposures of the Chemung Formation, drab gray to brown, irregularly bedded sandstone and crumbly shale are on the berm. The beds strike N40°E and dip 45° to 75°SE.

123.27-123.40 (123.30-123.43) TERRACE Deposits of tan to buff gray, pebbly, cobbly, silty, sand are exposed in a cut on the Western Maryland Railway.

123.56 (123.59) CANAL BOAT 57 Planks and iron bolts in the bed of the canal are remains of the abandoned boat.

123.58 (123.61) OUTCROP Gray, fine grained shaly sandstone Chemung Formation is on the berm. The beds strike N40°E and dip 65°SE.

123.82 (123.85) WALL ON BERM This wall is constructed primarily of rounded sandstone cobbles from the terrace deposits.

Tancey (P.T. Little)

123.84 (123.88) WAREHOUSE A timber frame, clapboard structure is on the berm. A large iron ring on the front was
An entrance to a former basin is on the berm. The basin was cut off by construction of the Western Maryland Railway in 1903. 150 ft. long x 40 ft. wide.

123.94 (123.98) CULVERT 179 Road culvert, constructed 1837-38, rebuilt 1868 to replace cumbered rock in the structure. The arch is semicircular and is built of hammer-dressed limestone. The arch has a 12 ft. span 6 ft. rise with 16 ringstones and a keystone. The abutment are 6 ft. high. The parapet and coping are 3 ft. high. The wings, parapet and spandrels are coursed limestone rubble. Pavement in the culvert consists of 3 rows of flat blocks of limestone, 2 ft. wide, 3 1/2 ft. long and 6 inches thick.

The coping and parapet have fallen on the west side and some of the canal bed penetrates the arch. There is a limestone revetment on the berm at the culvert. Stone for culvert, Tomoloway Limestone, is from the same quarry as that for...
Little Tonoloway Creek Culvert. An outcrop of the Hamilton Formation is adjacent to the culvert. The rock is shaly limestone. At the base of the culvert, on the river side, the beds strike N40°E and dip 30°SE. A road connecting with a bridge across the Potomac passed through culvert until 1923.

MP 124. 357.78 / 349.25
124.15 (124.19) **HIGHWAY BRIDGE** Constructed 1923. The span is a Warren curved chord pony (open) truss. It replaced an older through truss that was built about 1890. Up to then culvert 179 gave access beneath the canal to the river. A footbridge formerly crossed the canal at this point. It was constructed in 1871 and was an iron pony (open) truss, 96 ft. long and 10 ft. wide. From 1839 to 1879 a pivot bridge was over the canal at this point. The bridge over the Potomac River was built about 1890 by the Hancock Bridge Company. It was 4 steel spans, Baltimore truss, each 262 ft. long. This bridge was bought by the...
States of Maryland and West Virginia in 1924 and was destroyed in the flood of March, 1936. Temporary spans placed on the old piers and were removed in 1939 on opening of new bridge 1 mile west. The limestone from the piers was used for a jail and community hall in Hancock after the bridge was removed. There is the old abutment for the bridge on the riverside of the towing path. It was constructed of sandstone rubble. A stream gauging station of the U.S. Geological Survey is also on the side of the towing path and is connected to the path by a steel Pratt truss footbridge. A revetment of limestone and red sandstone is along the canal side of the towing path.

124.36 (124.40) CULVERT 182 LITTLE TONOLOWAY CREEK

Constructed 1835-37, cost $15,474.31. The segmented arch is cut limestone and has a 30 ft. span and a 16 ft. rise. 42 ringstones and a keystone are in the face of the arch. The parapet and coping are 3 ft. high. The spandrels,
The parapet and coping are coursed gray, wavy-wended limestone rubble. The top of the parapet and coping slope down to the east on the berm and slope to the west on the towing path side. The skewback and 10 ringstones on the east half of the arch and the lower 3 ringstones on the west on the towing path side have been replaced with concrete. A concrete liner is on the inside of the arch on the towing path side. Stone for culvert, Tondoway Limestone, was quarried along Little Tonoloway Creek, 1.60 miles above the culvert.

The site of Cohill Mill is in the recreation area along Little Tonoloway Creek between the canal and the river. The mill was operated by Rinehart and Cohill in the late 1800's.

124.57 (124.61) HIGHWAY BRIDGE, U.S. 522 Constructed by 5/7/70 Maryland State Roads Commission 1938-39. This bridge was opened October 5, 1939. It consists of 20 Wickert type 5/12.00 = 125.0 MP.
truss and girder spans. There are 7 deck girder spans on the north approach and 4 deck girder spans over the railroad at the north end. The roadway is 24 ft. wide; the bridge cost $972,462.30.

1837

125.11 (125.15) CULVERT 125 5'12.18

Road culvert, constructed 1835-37. The semicircular arch is cut limestone with a 4 ft. span and a 2 ft. rise. 16 ringstones and a keystone are in the face of the arch. Abutments are 1 ft. high and the parapet and coping are 4 ft. high. Spandrels, parapet and coping are coursed rubble of Ridgeley (Oriskany) Sandstone. A 10 ft. embankment is above coping.

1845

125.25 (125.34) CULVERT 125 5'12.35

Road culvert, constructed 1836-37. The semicircular arch is cut limestone with an 8 ft. span and a 4 ft. rise. 14 ringstones and a keystone are in the face of the arch. The parapet and coping are 2 1/2 ft. high. Spandrels, parapet and coping are coursed limestone in good condition; funnel OK. Spring line at water level.
stone and sandstone rubble. A 15 ft. embankment is above coping. A low flood plain is on the riverside of the towing path.

125.66 (125.72) CLIFFS OF RIDGELEY (Oriskany) Sandstone

[schematic drawing]

Cliffs of Ridgeley Sandstone are visible in summer.

125.41 5 ft. Box elder on frigate, 3 ft. diam. - on left (u.s.)
125.46 5 ft. Box elder on frigate, 3 ft. diam. - on right (a.e.)
125.62 5 ft. Box elder on frigate, 3 ft. diam. - on left (u.s.)
125.62 5 ft. Box elder on frigate, 3 ft. diam. - on right (a.e.)

126.42 (126.48) CULVERT 1836-37 JOHNSONS CULVERT

Concreted 1836-37. The semicircular arch, with a 10 ft. span and 5 ft. rise, has 14 ringstones and a keystone. The abutments are 5 ft. high and the parapet and coping are 2 1/2 ft. high. Spandrels, wings and parapet are coursed Ridgeley (Oriskany) Sandstone rubble. A waste weir, constructed in 1839, was formerly at the culvert. 10 ft. embankment over culvert. Beam embankment for 500 ft.

126.43 White Rock Hb. OK.

126.50 - 126.63 (126.52-126.65) LOW FLOOD PLAIN

The meadow on the river side of the towing path is a low flood plain.

126.92 (126.93) CULVERT 1836-38

Semicircular arch is cut limestone, with a 5 ft. span and
with a 2 ft. rise. There are 8 ringstones and a key-stone in the face of the arch. The abutments are 3 ft. high and are founded on bedrock. The parapet and coping are 1 ft. high and built of coursed Ridgeley (Oriskany) Sandstone rubble. Spandrels and wings are rough, Hammer-dressed limestone. A 15 ft. embankment is above the coping. The base of the culvert is on a flat exposure of Keefer gray sandstone. The beds are 1 ft. thick and strike N15°E, dipping 10°ESE. Vertical joints strike N35°E, N75°E and N75°W. Culvert in good condition; canal prism was full in last filling (1972). Waste weir formerly in upstream headwall of culvert; acting in basins on berm side of culvert.

126.97 (126.97) OUTCROP A ledge, 10 ft. high on the berm, is formed of brown-stained Keefer sandstone. Beds are 1 to 2 ft. thick and strike N40°E, dipping 8°NW and up to 8°E - gentle syncline; Jointed \(\frac{80}{80} \) Canal

127.00 (127.00) WASTE WEIR This is the approximate site of an old waste weir constructed in 1837-38.

573.98 : Informal overfall, 100 pace long. - Rock vegetation on river side of foretank, cobbles in vegetation on top of foretank, 2 ft. discharge to 2 revetments.

127.03 (127.03) OUTCROP A ledge of white Keefer sand-

stone is on the berm. Small crinoid joints (fossils) are common in the sandstone. Some shale is in the outcrop.

Beds are 1/2 to 2 ft. thick and strike N35°E, dip 25°NW.

The thicker beds are cut by joints that strike N 20°W and N70°W and dipping at right angles to the bedding.

514.10 - 514.20 Canal widening on bank; up to 80 ft. wide.

127.20-127.23 (127.20-127.23) OUTCROP A ledge 50 ft.

high is on the berm, just below the Western Maryland Railway. It is formed by the Bloomsburg Formation, red hackly sandstone, in beds up to 4 ft. thick. Massive olive gray, sandstone is exposed at the base of the red sandstone. The beds strike N45°E and dip 21°8' SE, 78° E SE (downstream) on west end of ledge. 60% by cut above ledge has a prominent vertical, transverse joint on downstream side.

DEVILS EYE BROW

127.28 (127.28) OUTCROP A prominent anticline in a ledge 514.28

on the berm, is famous from many photos of published in text books, scenic pamphlets and similar documents. The Bloomsburg Formation, red sandstone, red shale, and some green shale forms the anticline. Strike N 40°E, dip 40° NW on west, 65° SE on east. (Strike N60°E). Syncline at east end of outcrop, strike N60°E, dip 45° NW on east, 65° SE on west.

(404)
Diagram from field notes and photo in Pawpaw-Kencock folio
3 x 8 drawing 4 x 4 final

127.42 (127.42) Shefors Mill
124.42 ROUND TOP CEMENT MILL Old cement kilns

consisting of 8 arch openings with each arch having an 8 ft.
span, 4 ft. rise and 4 ft. abutments. It is 10 ft. to the
21 ft. long (high)
back wall in the kilns. 5 arches on the west and the eastern-
most arch and walls are made of blocks of Ridgeley (Oriskany)
16 ft. water wheel with water from canal via flume, operated grinding burrs 4 French burr
sandstone bound with mortar. 2 other arches on the east are
5 arches on the west and the eastern-
dry masonry. The kilns were covered by a wooden roof and
front. The mill burnt in 1903, rebuilt, and closed about
1909. Its capacity was 300 barrels per day. 200 ft. to the
west is a brick chimney. An old warehouse and mill formerly
stood between the kilns and the chimney, on the berm side of
the canal. It was a frame building, 4 stories high. The
cement mill was built by James Hook in 1835 and supplied
the canal with cement used in its construction. From 1868

Original mill 1839
Well along 4th path opposite 2d 13th kiln from east; well extends east to end and south.
Wall 4 ft. sandstone and limestone rubble.
Kiln 8 ft. high, semicircular, roof; wall above was 16 ft. high. Two western kilns have
rubber arch, group of 5 have cut ringstone, west two to east 6 cut ringstone, let kiln on
east and has cut ringstone.
to 46 it was operated by George Shafer. In 1868, Bridges and Henderson operated the mill and marketed Round Top Hydraulic Cement. The kilns are on an anticline of Bloomburg red sandstone which dip 30° on the west and 45° on the east. Gray shaly limestone (Wills Creek Formation) is exposed in the ledge at the west side of the kilns. The beds strike N40°E, dip 30°NW. A revetment wall on the berm at the site of the old warehouse is mainly limestone and sandstone rubble. West of the kilns, in cuts on the Western Maryland Railway, are ledges of Wills Creek gray limy shale. The beds strike N60°E and dip 70°SE. Just east of the old brick chimney is a syncline exposed in the railroad cut with the dip 30°WWN on the east and 70°ESE on the west. The strike is N35°E, beds vertical. At the old chimney the rock beds are vertical and in the railroad cut 50 ft. west they dip 30°ESE. Cement rock mines are in the vicinity, 2 are along the canal. A mine entry is 400 ft. west of the mill
35 ft. above canal. The opening is 200 ft. long and there
are old wooden tracks in the mine. The tunnel follows the
strike of the beds (Franz and Slifer, 1971, p. 90-93).

127.55 (127.55) OUTCROP A ledge 30 ft. high on berm is
formed by Wills Creek gray shaly limestone with thin wavy
beds that strike N30°E and dip 70°ESE. A small cave opening
is 200 ft. to the west and 20 ft. above the towing path. It
is a 3 x 3 ft. entrance with a passage triangular in section,
6 ft. high, 10 ft. wide, trending N40°E for 30 ft. where it
narrows to a small slit (Franz and Slifer 1971, p 92).

127.66 (127.66) CEMENT MINE The entrance is 20 ft. square
and has partly slumped. It is 20 ft. above the towing path
level. A tunnel trends N30°E for more than 400 ft. Just
inside the entrance are old brick and stone structures.

Shoring timbers are near the rear of the mine (Franz and
Slifer 1971, p. 92). The mine is in Wills Creek limy shale
at an anticline that strikes N^40^0^E and dips 60^0^ESE on east,
30^0^NNW on west. 300 ft. west the beds are horizontal for
200 ft., then the dip is 15^0^NNW to the end of the outcrop.
at 127.78. STAY OUT OF MINE TUNNELS, THEY ARE UNSTABLE
AND ROCKFALLS MAY OCCUR.

127.87 (127.37) OUTCROP A ledge on the berm, 30 ft. high,
40 ft. long, is formed by thick bedded limy shales (Wills
Creek Formation). Porous outcrop, discontinuous

127.9 + High concrete wall between WM By. canal, 20 ft. high
514.91-514.96 Front of outcrop = debris from flood, mud + leaves.
128.00 (128.00) PUMP HOUSE Square concrete pits, one 10 x
5 ft., 12 ft. in plan, the other 10 x 6 ft., each 20 ft. deep, are
on the river side of the towing path. These were foundations
for a pump house for wash water for a sand mine on the berm.

575.05 - west end of WM By. out.
128.20-128.90 (128.20-129.00) A high flood plain is on the
berm side of the canal.

128.50 (128.60) CULVERT 188 Constructed 1836-37. The
semitcircular arch is cut limestone, 4 ft. span, 2 ft. rise,
with 8 ringstones and keystone in the face. The parapet and
coping are 2 ft. high. The spandrels and parapet are cours
limestone and sandstone rubble. (The coping is cut limestone
and sandstone rubble) (The coping is cut limestone.) At 6 ft.
revetment is above the coping and a 3 ft. embankment is
above the revetment. The culvert is silted to within 1 ft.
of the top of the arch.

128.96 (129.05) TERRACE Broad flat areas on berm, 70 and
95 ft. above river, are terraces. There is also a low terr-
ace mound 30 ft. above the river on the river side of the
canal.

MP 129 515.95

129.06 (129.15) TERRACE There is a gravel covered flat,
40 to 65 ft. above the towing path (70 to 95 ft. above
river) on the berm.

129.14-129.23 (129.22-129.31) OUTCROP Low ledges on the
516.25 - 516.35
berm are formed by Rose Hill olive gray to brown shaly
sandstone and shale. Nearly horizontal beds

129.30-129.40 (129.35-129.44) OUTCROP A ledge on the berm is formed by Rose Hill olive gray to brown shaly sandstone and shale. The beds are nearly horizontal. A V shaped weir is in the river at 129.40 (129.44).

129.60 (129.61) OUTCROP A low ledge on the berm is formed by Rose Hill brown sandy shale. The beds strike N30°E and dip 18°NW. Continue to waste weir.

129.81 (129.80) WASTE WEIR 63 This is a concrete frame structure with 3 gates for insert boards. The two end gates formerly had paddles but these were replaced by insert boards. Dressed limestone blocks, up to 1 x 2 x 3 ft., are leaning at right angles, 10 ft. long on prime side, 8 ft. long on wingside. Toppart in the walls and wings. The original overfall at this site was constructed in 1837-38.

516.90 Leopards Mill HBO

130.04 (130.00) LOCK 53 8 ft. lift, constructed 1835-37.
129.81 (129.80)
510.85

263.7 (19 Sept. 1971)
Waste weir G3
Waste weir below Lock S3:
Some stones wings opening. Curved frame, 3 gates,
2 end ones were paddle gates replaced by boards.
ley (Oriskany) Formation. The stone was quarried at the end of Tonoloway Ridge, 3 miles southwest near Dam no. 6. A few limestone blocks are in the coping and in the lower part of the chamber on the towing path side. The upstream end of the chamber at the bottom has blocks of black limestone with prominent calcite streaks 1/16 to 1/2 inch wide. Slots for a stop gate are in the walls above the breast wall. A revetment 10 ft. long on the upper berm wing is probably the remnant of a crib fender. Bolts in the upper and lower towing path wings are probable remnants of timber fenders. A rise of stone 10 ft. long is also remnant of fender (upper end). The flume is on the berm, 30 ft. from the lock. Limestone and sandstone rubble revetment are along the flume. An overfall spillway for the flume is at the front of the lock and has a 6 x 10 ft. concrete frame for insert boards. The lockhouse was constructed in 1839 and is on the side of the towing path. Foundation of limestone rubble and concrete are all that remain of the lockhouse.

(412)
130.09 (130.05) **CULVERT 192** Road culvert, constructed 517.65

1835-38. The segmented arch is cut black, dense limestone with a 10 ft. span and 4 ft. rise. 14 ringstones and key-stone are in the face of the arch. The abutments and skewbacks are 4 ft. high on the towing path side and 8 ft. high on the berm. The parapet and coping are 3 ft. high. The berm parapet slopes up towards the upstream end where it is 1 to 2 ft. higher. The spandrels and parapet are coursed limestone rubble. There is a wing wall on the lower towing path side. On the berm the wing wall is splayed. A 4 ft. revetment and a 10 ft. embankment are above the coping.

Four 10 x 10 inch timbers (logs) that form the footing have been washed 30 ft. downstream on the towing path side.

130.68 (130.74) **CULVERT 193** Constructed 1835-38. The segmental arch is cut limestone, 12 ft. span, 4 ft. rise, with 16 ringstones and a keystone in the face. The abutments are 5 ft. high. The parapet and coping are 2 ft. high.
Spandrels and parapet are coursed limestone rubble. The coping is dressed limestone. Coursed limestone rubble is in the wing walls. A 10 ft. embankment is above coping.

The site of Leopards Mill is on the river side of the canal at the culvert. It operated until 1835 as a grist mill and from 1835 to 41 it was used by George Shafer as a cement mill to supply cement to the canal.

130.93 5/7.90 Informal overfall. 2 low spurs away 100 ft. of roadway; east end 15 ft. long, west end 20 ft. long.

131.32 (131.30) CULVERT 194 Road culvert, constructed July 21, 1836-38. The semicircular arch, 9 ft. span, 3 ft. rise, has 8 ringstones and a keystone in the face. The abutments are 5 ft. high. The parapet and coping are 2 ft. high. Wings are at right angles to the culvert face. Spandrels, parapet and wings are coursed limestone rubble. A 15 ft. embankment is above the coping.

131.58 Footbridge over canal (not seen) 5/8.60 + revetment on riverside 2.4 ft. high.

131.81 Indian field trip in rain just before autumt 13.82

131.82 (131.77) OUTCROP A low ledge on the berm beneath 5/7.72

the railroad, is formed by the Bloomsburg Formation, hackly
beds of red shaly sandstone, some green shale at base. The beds strike N40°E and dip 10°NW.

131.96-131.95 (131.81-131.90) OUTCROP A cut along the 578.76 Western Maryland Railway exposes McKenzie gray, limy shale. The beds strike N20°E, dip 60°ESE. A vertical joint strikes N70°W.

131.95 (131.90) OUTCROP A ledge 30 ft. high is on the 578.85 berm. It is formed by red, massive sandstone, Bloomsburg Formation. Strike at right angle to canal, dip 5° downstream (approx). 132.06: 578.92

132.08 (132.03) CULVERT 196 (Constructed 1836. The semi-circular arch is cut, gray, brown stained, sugary, fine-grained limestone. The arch has a ¾ ft. span and 2 ft. rise with 8 ringstones (including skewback) and a keystone in the face. The abutments are 2 ft. high. The parapet and coping are also 2 ft. high. The spandrels and parapet are coursed sandstone rubble. A 15 ft. embankment is above
the coping. The arch has partially fallen on the upstream
side of the towing path. The parapet has fallen in the
center and upstream side of the towing path. Canal is on
river side.

132.19 Canal works crossing between canal and W PA.

132.20 Indian fish trap in river.

132.37 (132.40) WASTE WEIR The ravine on the river side
of the towing path is the site of Waste Weir 64, construct-
ed 1837.

132.42 (132.45) CULVERT 197 Constructed 1835-38. The
coping and semicircular arch are cut limestone. The arch
has a 5 ft. span and 2 ft. rise with 8 ringstones and a
keystone in the face. The parapet and coping are 15 ft.
high. Spandrels, wings and parapet are coursed rubble of
medium grain limestone. The wing walls are at right angles
to the face of the culvert. Some limestone rubble is on
the towing path west of the culvert.

132.56 (132.59) A terrace is on the berm at the level of
the towing path.
132.88 (132.94) OUTCROP A low ledge on bank contains a
symmetrical anticline in Keefer Sandstone, known as the
Devils Eyebrow. The lower 6 ft. of beds in the anticline
are 2 to 6 inches thick. Above this the beds are up to 1
ft. thick. The rocks are gray, quartzitic sandstone tinted
brown. 40 ft. of the formation are exposed. The beds
strike N20°E, dip 45°SE on the downstream side and strike
N40°E, dip 48°NW on the upstream side.

Diagram from field notes 8/30/69
Draft 8 x 8, final 4 x 4.

132.92 (133.00) OUTCROP Cuts along Western Maryland Rail-
way are in Bloomsburg red sandstone and interbedded shale.
The beds strike N40°E and dip 45°NW.

MP 133.00 (76.32) - railroad cuts in Sec.

Maryland Railway expose a syncline, an anticline and a syn-
cline developed in the Wills Creek shale in center part of
section and Bloomsburg red beds in eastern and western parts.

(417)
132.88 Ambience in Kupr's.
5/19, 75
(76.5 distance 8.38.69)

← upstream

View NNW
The Wills Creek is primarily green to gray, clayey and limy shale. The Bloomsburg is mainly red shaly sandstone and red, green and bluish shale.

\[45^\circ \]

133.24 (133.30) WASTE WEIR 65 The original overfall was constructed 1838. The waste is now a concrete frame with 3 gates for insert boards. Concrete wings, 15 ft. long are on the canal and river side of the waste weir.

133.49-133.58 (133.56-133.65) OUTCROP An exposure of Wills Creek Shale is along the Western Maryland Railway. There is a broad anticline on the west and a tight anticline and shear folds on the east. Small thrust planes are common. The rock is dominantly gray shale and sandstone. Red sandstone of the Bloomsburg Formation is at the west end of the exposure.

133.49 Indian field key in river
133.60 Capon Junction HB 6
5/20.45
Diagram—p 154 Md GS—Wash. Co. and field notes 4/29/71 p.3
6"x 8" draft, 4" x 4" final.

MP 34 520.85
133.93 (134.00) LOCK 54 7.5 ft. lift, constructed 1836—Lock chamber filled with earth.
40 and 1848-50. The facing is Ridgeley (Oriskany) sandstone from a quarry at the end of Tonoloway Ridge, 3/4 mile west of the lock. The lower end of the lock is mainly dressed
Tonoloway limestone. Some sandstone is in the coping on
the towing path side and in the berm coping. Concrete coping
is at the lower recess, towing path side. Abutments for the
towing path bridge over the feeder from Dam no. 6, at the
lower end of the lock, are rough dressed sandstone blocks at
the top and limestone at the base. The bridge was built
washed out in 1924.
1850. The breast wall of the lock has partly collapsed.
Slots for stop gate planks are on the lock walls above the
breast. The flume is 20 ft. from the lock on the berm. It
is 3 ft. deep, 10 ft. wide with an 8 ft. drop at the spill-
way at the front of the lower berm wing. Bolts in the
MP134 Lock 54

Fieldstone on form - frame on foundation of rubble limestone and sandstone - white-washed.
At east end of lock on towpath - old rope bridge over fiver from Lock 6. Forty feet long.
Abutment of fiver bridge is for sandstone, with
3 tiers of limestone at base, 9 tiers of sandstone above - rough dressed.

159.65 4/29/71

Lockhouse

159.78

160.6 and Lock 55

Peteqg - Der sandstone along WM Ry.,
dip 60° upward.
upper towing path wing are remnants of a timber fender.

There is a footbridge over the center of the lock. The miter frame is visible in the upper recess. The lockhouse is on the berm and is a 2-story clapboard structure on rubble cellar walls. Lock has snubbing post

100 ft. west of the lock is an outcrop of Tonoloway Limestone. The beds strike N30°E, dip 45°NW; 150 ft. west the dip is 60°NW.

134.04 (134.09) OUTCROP Keyser Limestone and limestones of the Helderberg Formation are exposed in a low ledge on the berm and in a railroad cut. The beds strike N30°E, dip 60°NW. 350 ft. of limestone is exposed and it is mainly thin bedded. The center part is massive.

134.10 (134.13) DAM No. 6 AND LOCK 55 Constructed 1836 to 1839. The dam is 475 ft. long between abutments. The front of the dam was straight for 175 ft. in the center.
150 ft. on either side of this the face was flared upstream 5 ft. The front face was 15 ft. high above low water and the top was 58 ft. wide. The front 25 ft. of the top sloped down downstream at 5:1 and the back 33 ft. sloped down upstream at 2 1/2:1. The back face was 8 ft. above low water. The dam was built of timber cribs, stone filled and with timber sheathing. It cost $104,426. The canal was opened to Dam no. 6 on April 19, 1839. From 1839 to 1850 the feeder channel to Lock 54 was used as a canal with barges passing into and out of the pool by way of a guard lock. The towing path was on river side of feeder. During this period coal was brought by the B & O Railroad from Cumberland to a wharf just above Dam no. 6 and transferred to canal barges. The Maryland abutment, guard lock and guard wall are hammer-dressed Ridgeley Sandstone from a quarry on Tonoloway Ridge, 1/2 mile to the north. The guard wall below the dam 15 ft. high, 120 ft. long and 15
The Virginia abutment is hammer-dressed Tonoloway Limestone quarried in Virginia, 1 mile from dam. Originally the Virginia abutment connected with two guard banks, one parallel to the river and the other continuing south from the dam; latter had gate allowing Long Hollow Run to pass through the guard bank. The guard banks were rebuilt in 1852 and the one parallel to the river was removed and masonry wall was extended south from the Virginia abutment to high ground. The dam backed a pool 4 1/2 miles long.

The flood of 1852 broke through the guard banks on the Virginia side and the 1877 freshets damaged both abutments. The floods of March 31, April 1 and 4, 1886 tore out 237 ft. of dam. Most of the dam was rebuilt with new timbers at a cost of $45,335.67. 142 ft. of dam on Maryland side, was rebuilt in 1891. The 1924 freshet damaged the Maryland side of the dam and a breach of 50 ft. on Maryland side occurred on May 2, 1929. The cribs were rebuilt but the
freshet on August 2, 1933 again breached the dam. Another large breach on mainly the upstream side of the dam occurred on December 23, 1933. The remainder of the dam was partially destroyed by fire apparently set by fishermen on August 31, 1934. The flood of 1936 carried half of the dam away. The remains of the dam are now tree-covered mounds of timbers and rubble extending half way across the river from the Maryland abutment. The river flows against the West Virginia abutment. The guard wall between the dam and Lock 55 is an earth embankment and stone wall. A guard lock and chambered inlet lock cut through the guard wall. The feeder culvert on the north side of the guard lock extends through the guard wall. The culvert has a 10 ft. span and 5 ft. rise with 16 ringstones and a keystone in the face of the arch. The parapet and coping are 6 ft. high at the lower end. 18 ringstones and a keystone are in the face of the arch at the upper end. A foot bridge is
extends 60 ft. downstream from the Maryland abutment. There is a stone guard wall on the river side of the feeder downstream from the inlet lock.

LOCK 55 7.8 ft. lift, constructed 1836-40. The lock is at the north end of the guard wall of Dam no. 6. It is faced with hammer-dressed Ridgeley (Oriskany) sandstone from a quarry 200 ft. to the west at the south end of Tonoloway Ridge. The diagonal break in the stonework below the lower recess is the junction between the old guard wall and the lock walls that were built later. Slots for stop gate boards are in the walls of the lock above the breast wall. The revetment on the upper berm, 15 ft. long, is probably the remains of a fender crib. Bolts on the upper wing, towing path side, are probably from timber fenders. The miter frame is visible in the upper recess. The lockhouse was on the berm but only the stone foundation
remains. A footbridge is over the head of the lock. The
flume is on the berm with an overfall at the front face of
the lock 10 ft. wide, 2 ft. deep and with a 10 ft. drop.

OUTCROPS of Ridgeley (Oriskany) Sandstone
are on the north side of the lock and in ledges along the
Western Maryland Railway. 150 ft. of the sandstone is ex-
posed. Beds are 1 to 15 ft. thick with massive beds at the
west end of the exposure. The beds strike N70°E and dip
45° to 60°NW. A large boulder of sandstone is adjacent to
the towing path below Lock 55.

Diagram 1) plan of Dam no. 6, Lock 55
8"h x 16"w — 2" x 4" Field notes 4/29/71 p5
9/19/71 p 10, 11
2) Perspective and exploded view Dam no. 6
48" x 36" — 16" x 12" page size
-NA photostat

134.28 Cutoff spilling for Long Hollow (Polly) Pond with circular, corrugated pipe
134.28 (134.31) RESLEY RUN SPILLWAY An overfall, 60 ft.
long, is opposite Long Hollow, Polly Pond. The walls are
cut limestone and the piers for the towing path bridge are
limestone blocks and concrete 10 ft. long, 4 ft. high,
Concrete Overflow
Location 136.3 to W 30.2 to C

[Diagram showing concrete overflow structures and waterways]
Spaced 20 ft. The towing path was formerly on a timber bridge resting on these piers. 10 ft. wings are on the river side. There is a 10 ft. drop at the front of the spillway. The pavement of the spillway is coursed sandstone rubble. An outcrop of Hamilton shale is along the Western Maryland Railway.

134.51 OUTCROP A bluff on the berm, 20 ft. high is formed of highly cleared Hamilton gray, shaly sandstone. Dip 76° upstream, strike N 40° E, cut in railroad 50 ft. deep behind (north of outcrop.

134.57 OUTCROP Low ledges on the berm are gray shale and shaly sandstone, Brallier (Woodmont) Formation.

The beds strike N 30° E and dip 75° NW. Beds verticul at west end, beds 1.5 m. thick. -ding R. canal.

134.60-134.69 OUTCROP Low ledges on berm are formed of gray shale and sandstone, Brallier (Woodmont) Formation.

The beds strike N 30° E, dip vertical on east, 60 to 70° NW at the west.

134.90 CULVERT 199 Constructed 1837-38. The
semicircular arch is cut Ridgeley (Oriskany) Sandstone with
a 6 ft. span and a 3 ft. rise. 8 ringstones and a keystone are in the face of the arch. The parapet and coping are 3 ft. high. A 10 ft. embankment is above the coping. Spandrels, parapet and wings are coursed sandstone rubble. The culvert is filled to the arch (1971).

Road comes in from north: Woodmont Rd.

The concrete piers and abutments with iron bars and rings on the berm and towing path are remnants of a timber footbridge that was formerly suspended by cables across the canal. The bridge gave access to the river from the Woodmont Club founded 1870.

Construct 1837. The semicircular arch is cut white sandstone with a 10 ft. span and a 5 ft. rise. 20 ringstones and a keystone are in the face of the arch. The spandrels and parapet are coursed, red sandstone rubble. [The face of the culvert has fallen and the timber barricade.

3 ft. parapet, 6 in. coping
Rebuilt

Arch, coping, sandstone, dressed; 3 ft. deep, (lost) c.f.f. drop
footings are exposed."

135.20 **OUTCROP** Cuts along the road on the berm side are in deep silty soils exposed in a nearly vertical face.

The soil on the face of the cut is channeled by deep grooves.

The ability to stand in **steep** cut slopes is characteristic of silty soils with fragments of shale that develop from Middle Devonian shale formations.

135.80 **CULVERT 201** Constructed 1837–38, completed 1840. The semicircular arch is cut white Ridgeley (Oriskany) Sandstone with a 10 ft. span and a 5 ft. rise. The ringstones and a keystone are in the face of the arch. The abutments are 2 ft. high and the parapet and coping are 1 1/2 ft. high. The spandrels and parapet are coursed red sandstone (Catskill) rubble. An embankment is 10 ft. above the coping. The timber footings of the culvert are exposed below the tow path. Extent of find of wings. Surface Timber: 3" x 8" parallel to culvert, turns snakes 10" x 10".

(438)
CULVERT 202 Constructed 1837-39, completed 1849. The semicircular arch is cut white Ridgeley (Oriskany) Sandstone with a 6 ft. span and a 3 ft. rise. 10 ringstones and a keystone are on the face of the arch. The abutments are 1 ft. high. The parapet and coping are 3 ft. high. The wings are flared. The spandrels and parapet are fine grained, well bedded, coursed limestone rubble. 10 ft. submersion depth.

LOCK 56 7.7 ft. lift, constructed 1837-39, completed 1849. The facing is Tonoloway Limestone from a quarry near the mouth of Cacapon River in Virginia and from a quarry on Little Tonoloway Creek near Hancock. The limestone is wavy-banded, gray with orange stained bands up to an inch thick. Concrete is on the towing path side of the chamber, above the old coping, and at the circular quoins and recesses. A pile of limestone blocks removed from the chamber are along the towing path. Slots for stop gate boards are at the head of the lock. Bolts on the face of (439)
the lower and upper berm wings are from timber fenders.

The flume is on the berm, 25 ft. from the lock. The spillway for the flume is 10 ft. wide and 4 ft. deep with a 6 ft. drop at the lower berm wing wall. The lockhouse is on the towing path side of lock and is a clapboard structure over logs. The foundation is red, brown sandstone (Catskill)

Date: 1917 - in concrete on casing at lower rear, 25 ft. wall on berm rubble. Below daily bank. Slope 12 1/2 ft, long on first prism side.

Footbridge across lower end if lock - read on casemay at side.

OUTCROP A cut along the Western Maryland Railway exposes gray and red shale, Catskill Formation, on the east and folded brown sandstone, Pocono Formation, on the west. The rocks are overlain by cobbles in orange brown silt, a Quaternary terrace deposit. The sandstone ledges at the railroad bridge and at the aqueduct are white, stained brown, fine grained, arkosic beds, 1/2 to 2 ft. thick, striking N10°W and dipping 77°E.

136.58

SIDELING HILL CREEK no. 8 AQUEDUCT Construct

Date checked 9/10/1978 on aqueduct. (442)
1837-1840, completed 1848. This aqueduct has a single, elliptical arch with a 60 ft. span and a 12 ft. rise. 18 ringstones are on east side of the keystone, 25 on the west. The aqueduct is 150 ft. long between wings. The abutment is 5 ft. high on west and 8 ft. on the east. The east abutment is backed by a ledge of rock. Foundations for the abutments are 5 ft. below the present water level and 13 ft. below the former pool of Dam no. 6. The skewbacks are 2 tiers high. The parapet and coping are 7 ft. high. The top of the coping is 24 ft. above the former level of the pool of Dam no. 6 and 36 ft. above foundations. The towing path parapet is 7 ft. thick at the top and 7 1/2 ft. at base. The berm parapet is 5 ft. thick at the top and 5 1/2 ft. at the base. The arch, skewbacks, water table, coping and the inside of the parapet are cut, dense, black, laminated Tonoloway Limestone from near the mouth of the Cacapon River. The rest of the aqueduct is coursed limestone and Pocono sandstone rubble.
Spilling on break - overfall, not water gate
Sluice, closed and over lay or tamp
Pile of limestone blocks on break
Add in wall when breach for sump piles
No evidence of retaining
W. 84. - Sidinging Hill Bridge, 2 legs, arch girders (g);

Sidinging Hill Aqueduct

Circular arch stands 6", other lay in block not rail
which is 3/4 x 2 1/2" wide. 8 inches between pannels
13 inches between squares. All large types gone
Bore iron slat flange, let bear rail. Pounds and
squares separated at line.

L56
Sidinging Hill

(446)
The sandstone was quarried on Sideling Hill. The approach walls are coursed rubble, mainly Pocono Sandstone with some limestone. The berm wall was removed and a timber trunk placed in 1874. The berm side gave way in 1885 and was rebuilt. 14 timbers, each 10 x 10 inches, spaced 4 ft., are embedded in concrete in the base of the waterway. A waste weir with a concrete frame for three gates and insert boards is on the berm at the east end of the aqueduct. The spillway was formerly over a rock ledge at the base of the railroad bridge. 100 ft. west of aqueduct - red purple sandstone exposed on sides of breccia - 8 ft. high.

Western Maryland Railway bridge no. 1276 is on the berm side of the canal. It is a 2 span, deck plate girder bridge, built 1905, by the Pennsylvania Steel Company, Steelton, Pa.

\[MP \ 137 = 523.68 \]

\[137.00 \ \text{OUTCROP} \]

Cuts on the Western Maryland Railway expose sandstone and shale of the Pocono Formation. The beds strike N20°E and dip 65°E.
Sideling Hill Agreement

(15 Aug. 1971)

386a

Plan

(15 Aug. 1971)

Berm parged 2'6". Faucet heads in stone.
Agreements 2'6" red stone.
137.09-138.23 OUTCROP Cuts on the Western Maryland Railway expose red hackly shale and sandstone of the Catskill Formation. Some gray shale and sandstone, Chemung Formation, is on the west. Outline of exposure: split from railroad cut, mound at 525.5 ft. more 5 ft. elevation for 30 ft.

Diagram—section exposed on WH.
Original—14" x 8"—5 columns—2 plans of joints—final 7" x .4" (full page). Field notes 9/6/69-p. 3-5 + 6, 7.

137.50-138.50 Two floating bridges in this section were built to the West Virginia shore in 1838 to obtain embankment materials.

MP 138: 524.6 ft. on May 15, 1950, enroachment on WH by West end of Indigo Tunnel had freight train + engine in canal

138.33 OUTCROP A low ledge on the bench is just west of 524.90—525.00

the portal of Indigo Tunnel (Western Maryland Railway). Red sandstone is overlain by 60 ft. of gray sandstone and shale of the Chemung Formation. The beds strike N30°E and dip 65°SE. The rocks exposed are similar to those at the end of the section east of the railroad tunnel.

138.48-138.57 OUTCROP A ledge on the bench is formed of 525.05—524.10

strike N10°E, dip 55° upstream.

rocks of the Catskill Formation. The red sandstone is
Joints on bedding plane in sandy sandstone in cut on WM Ry.
6 Sept. 1969

as abov

W. WM Ry E.
<table>
<thead>
<tr>
<th>Irregularly bedded and strikes N40°E and dip 58°SE.</th>
<th>Beds 1 in. to 6 in. at 0.10 = 10 ft. of gray silt, 1-2 ft. beds; red beds to 528.65.</th>
<th>138.55 TERRACE</th>
<th>There is a flat area on the berm, 5 to 10 ft. above the level of towing path, (20 ft. above the river) on the east and at the towing path level 1,000 ft. to southeast.</th>
</tr>
</thead>
<tbody>
<tr>
<td>528.65 - 525.15 - Public rest room at middle of towpath.</td>
<td>138.68 - 525.40 - Indigo Bend H6O, just west of lock at 139.30.</td>
<td>139.25 LOCK 57</td>
<td>8 ft. lift, constructed 1535-39, 1549-50.</td>
</tr>
<tr>
<td>526.09 Lock 57</td>
<td>Indigo Bend HBO, just west of lock at 139.30.</td>
<td>The face is hammer-dressed limestone from a quarry near the mouth of the Cacapon River in West Virginia. Some of the limestone is from Harts Quarry on Little Tonaloway Creek.</td>
<td></td>
</tr>
<tr>
<td>The limestone is banded with bands 1/2 inch apart. The upper circular quoins and the upper half of the chamber on the towing path side, except for upper 3 tiers, are concrete. Slabs of brown sandstone are in the wings. Slots for stop gate boards are at the head of the lock. The flume is on the berm, 30 ft. from lock. It is 4 ft. deep, 5 ft. wide, with a revetment of red sandstone, limestone and gray sandstone rubble. A concrete frame, single gate, board insert</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
139,25
Flume - tail of lock 57.
(19 Sept. 1971)

Waste on berm, stem end of lock 57, 30 ft. from lock.
1 gate, concrete, boards placed across 10 ft. wide overfall,
10 ft. deep at firm.

View of berm face
control gate is at the lower end of the flume. An overall
for the flume, 10 ft. wide with an 8 ft. drop, is on the berm
wing. The miter sill is exposed in the upper recess. Bolts
on the towing path and berm sides at the lower end of the
lock are remains of the timber fenders. The lockhouse is on
the side of the towing path. It is clapboard over logs
with a foundation of reddish brown and dark gray sandstone
rubble. Blocks of limestone from lock chamber are along
the towing path at the upper end of the lock. A cement
house was at the lock in 1840. 30 ft. wall on berm blew lik.
4 x 4 in. slit for inch strands at head of berm.
Rubble masonry wall 100 ft. long on towing path 20 ft. tall, lock.
A 40 ft. long embankment on the berm at the upper end
of lock is an old landslide.

Brown shaly Catskill Sandstone crops out on the hill
on the berm. 8 ft. is exposed and the beds strike N40°E
and dip 35°SE.

139.40-140.26 OUTCROP A long exposure of the Catskill
and Chemung Formations is in railroad and canal cuts. The east half duplicates the western part of exposure which is at the east portal of the Indigo railroad tunnel. Two bridges across the Potomac for embankment materials were

Diagram 14"1 x 8"h - final 7" x 4" - page size
2 tiers of profiles- Field notes 9/19/71, p.4-6.

built in 1839 between 139.40 and 140.00. They were washed out January 15, 1840 with debris from the upper bridge wrecking the lower bridge.

MP140.00 : 526.88
140.03 : 100 ft. long stone wall on farm just west of Indigo railroad tunnel
140.91 :inine ledge above railroad - embankment cut 100 ft. high.
147.70	FIFTEEN MILE CREEK No.9 AQUEDUCT Constructed
1838-41. The arch was laid in July 1849 and the aqueduct completed in 1850. It has a single, semicircular arch with a 50 ft. span and a 10 ft. rise. There are 38 ringstones and a keystone in the face of the arch. The aqueduct is 140 ft. long between ends of the wings. The water table belt is 1 ft. above the crown of the arch. Abutments are 5 ft. high and the coping and the parapet 7 ft. high. The
top of the coping is 29 ft. above the stream and 31 ft. above the foundation. The towing path parapet is 7 ft. wide at the top and 7 1/2 ft. at the base. The berm parapet (stone) is 5 ft. wide at the top and 5 1/2 ft. at the base. The waterway is 21 ft. wide. Arch stones, skewbacks, water table, coping and inside of the parapet are cut sugary white sandstone. Some pebbly conglomerate, with pebbles up 1/2 inch size, in the aqueduct was obtained from the Pocono Formation on the summit of Sideling Hill in West Virginia, 3 1/2 miles from the aqueduct. The rest of the aqueduct is coursed sandstone rubble. A concrete frame, three gate waste weir with insert boards is on the upper berm wing.

The bluff on the west bank of Fifteen Mile Creek is 20 ft. high and is formed of olive gray shale and shaly sandstones in beds 1 to 6 inches thick, which strike N30°E (downstream) and dip 80° NW to vertical. The rock is part of the Chemung Formation.
The Western Maryland Railway crosses the creek on a fill bridge no. 1309.

over 2 concrete semicircular arches with 15 ft. spans and 7 1/2 ft. rises. These arches are on 12 ft. abutments.

141.14 end rise on fill on berm.

141.30 (141.35) OUTCROP A low ledge on the berm is over 2 concrete semicircular arches with 15 ft. spans and 7 1/2 ft. rises. These arches are on 12 ft. abutments.

141.30 (141.35) OUTCROP A low ledge on the berm is formed of gray sandy shale, Chemung Formation, in beds 1 to 2 inches thick. The beds strike N40°E and dip 60°SE to vertical. - at 141.00 - as above, dip 60° (w.s.)

141.76 (141.83) OUTCROP A low ledge on the berm is formed of gray sandy shale and sandstone, Chemung Formation, in beds 1 to 2 inches thick. The beds strike N20°E and dip 60°ESL.

141.73 (141.87) OUTCROP A ledge on the berm is formed of gray sandy shale and sandstone, Chemung Formation. The beds strike N30°E and dip 45°SE (w.s.)

141.00 MP: 528.00 - at beginning of curve.
141.05 MP: 528.50 - informal overfall - 138 ft. high; (gully is cut);some stone variant; sandstone phen; stone bluish-gray.
142.26-142.40 (142.35-142.48) OUTCROP A cliff 100 ft.

high on the berm and a low ledge along the canal contain
dark gray, fine grained highly fractured, thick bedded sandstone, Cetuskall Formation. There are some zones up to 2 inches thick made up of beds 1/4 to 1/2 thick. 3 prominent joints, 120° angle between each and one set parallel to the strike, are all at right angles to the bedding. The strike of the beds is N30°E and the dip 55°ESE. (d.1.)

142.58-143.29 (142.66-143.37) OUTCROP Ledges and cliffs on the berm contain complexly folded, gray, hackly shale, sand shale and sandstone.

Diagram 7 1/2"x8" - reduce to 3 3/4"x4".

Section profile, field notes 9/6/69, p. 11-15.

143.36 (143.44) BRIDGE Western Maryland Railway Bridge

Ledges up to 75 ft. high, 6 to 28 ft. wide, shale, sandstone, clays, sand. Bridge no. 1317, has 4 deck Warren steel trusses on concrete piers over the river and single deck plate girder spans on the west and over the canal on the east. The bridge was constructed in 1917.

143.94 (143.99) LOCK 58 8 ft. lift, constructed 1838-

(460)
Lock 58

Concrete coping + well
- Dr. coping 3.5 ann
- Concrete coping + wall
- Screen hole at Ep,
- Casing dealt in recess

Low sand
25 stone wall

Concrete flume pipe on downstream side

9/19/71
2

(462)
1840, completed 1848-50. The lock was originally built of hammer-dressed Tonoloway Limestone quarried in West Virginia near the mouth of the Cacapon River. Some limestone is also from Harts Quarry on Little Tonoloway Creek. The chamber walls and most of the coping were faced with concrete in 1909. The upper recess and tail of the lock are Ridgeley (Oriskany) brown gray sandstone and some limestone. The coping at the lower recess is white Ridgeley (Oriskany) Sandstone. The flume is on the berm 20 ft. from the lock. It has a concrete frame with 2 gates for insert boards. 15 ft. from the lower berm wing. A spillway, 10 ft. wide is at the face of the wing and ends in a 6 ft. drop. The spillway is coursed, gray and reddish brown sandstone (Catskill Formation). Slots and rods in the upper wing, towing path side are remnants of a crib fender. The 20 ft. revetment on the upper berm is probably the remnant of another crib fender. There was no wing on the upper berm.
of the lock. A bridge was formerly over the tail of the lock. It was constructed in 1849 with stone abutments and a wooden superstructure with 17 ft. clearance over the surface of the canal. The footbridge is now over the lower part of the lock. The lockhouse was on the towing path side and was formerly clapboard on a gray sandstone rubble foundation. It was carried away in the 1936 flood.

144.09-144.40 (144.15-144.46) OUTCROP The ledges on the berm are formed of gray shale, Chemung Formation. The beds strike N30°E and dip 60°NW. A gentle syncline (Fishpot Rock) at the west end dips 20°NW on the east limb and 25°SE on the west.

144.40-144.45 (144.46-144.51) OUTCROP The ledges on the berm are formed of gray shale and sandstone, Chemung Formation. An anticline is on the east end of the exposure.

The beds strike N30°E and dip 58° to 70°NW on west limb.

Anticline at Drills Alley NBO

(464)
and 25°SE on the east limb. Some beds pinch out in the anticline.

144.60-144.66 (144.64-144.68) OUTCROP Low ledges on the berm contain gray shale, Chemung Formation. The beds strike N20°E and dip 70° WNW.

144.71 (144.72) OUTCROP A dark gray to black sandstone with thin, irregular veins of calcite is exposed in a cliff on the berm. The beds are 1/2 to 4 ft. thick and form a tightly folded syncline, one of the few that are well exposed along the canal. 531.89

Diagram 8" x 8" reduced to 4" x 4". Field notes 9/6/69 p.18.

144.84-144.86 (144.85-144.87) OUTCROP Gray shale and sandstone, in a succession of anticlines and shallow synclines, are exposed in ledges on the berm.

Diagram 8" x 8" reduced to 4" x 4". Field notes, 9/6/69, p.18.
Construction of canal from 144.90 to 145.70 was very expensive because of the steep slopes and lack of earth for embankment. In 1839 engineers planned a temporary bridge across the Potomac to get earth from West Virginia. The contractor, however, got earth from the uplands in Maryland and incurred heavy costs in road building.

144.95 (144.99) OUTCROP A ledge on the berm is formed of gray shale and shaly sandstone, Chemung Formation. The beds strike N40°E and dip 25° to 30°SE. A high flood plain is on the river side of the canal.

MP 145: 531.92.

145.61 (145.63) OUTCROP Reddish brown sandstone in beds up to 2 ft. thick is exposed in a ledge on the berm. The beds strike N45°E and dip 50°NW (300°).

145.86 (145.95) WASTE WEIR This structure is a concrete frame for 3 gates with board inserts. Timber cribbing is in the wings on the river side. The original overfall was
constructed here in 1850. The concrete waste weir was
built in 1915, date on mentally wall.
MP146.5.32 56
4146.39 146.50 LOCK 59 8 ft. lift, composite lock con-
structed 1836-39, completed 1848-49, rebuilt 1872. The
chamber walls are coursed gray sandstone rubble, Chemung
Formation. Hammer-dressed limestone is at the upper end of
the lock. The lock was formerly faced with timber and some
furring and bolts remain. The recesses were faced with
timber. Ridgeley (Oriskany) white sandstone are in the
coping at the recesses and the upper end of the lock. The
revetment on the lower berm, 150 ft. long, is a remnant of
the crib extension built in 1881. The miter sill is exposed
in the upper recess on a longitudinal timber floor. A revet-
ment, 20 ft. long on the upper berm, is probably a remnant
of a crib fender. There are no slots for stop gates at the
upper end of the lock. The flume on the berm, 25
ft. from
the lock, has a 2 gate concrete waste, with insert boards,
20 ft. upstream from the face of the lock. The waste weir was built in 1910. The flume ends in an overfall spillway 10 ft. wide, 5 ft. deep with a 4 ft. drop on the lower berm wing. There is a footbridge over the lower recesses. The lockhouse was along the towing path and was clapboard on a foundation of sandstone rubble. It was destroyed in the flood of March, 1936. Lock 59 is at the lower end of 7-mile Bottom.

146.79 146.79 **BRICKHOUSE** There are ruins of a large brickhouse on the berm.

146.73 146.82. **CULVERT** 206 **DEVILS ALLEY** Road culvert constructed 1838-39. The semicircular brick arch has 5 layers of bricks, 5 inches on side with a 12 ft. span and a 6 ft. rise. The parapet and coping are 3 ft. high. The spandrels, parapet and coping are mainly coursed sandstone (Catskill Formation) rubble, with some white sandstone.

(471)
"Bevans Farm".

MP 147: 533.88

147.02 (147.10) **BRIDGE** Western Maryland Railway Bridge

no. 1348 consists of an east approach deck, plate girder span, 5 steel skew deck Warren spans on concrete piers over the Potomac River and 4 deck plate girders on steel towers between the river and the canal. 1 steel deck Warren truss is over the canal. The approach span on the west is a deck plate girder.

MP 148: 534.81

147.37 - 150.52 "Improvements" along bridge - access, guard and over land via 1 steel bridge, stone wall, 2 layers, clay brick, good facing on land.

147.81, Inland of s., 246 ft. long, center 534.18, same top grade, 50 ft. deck of 3-5/8 in. boards, 2.5 in. steeple, on hessian flemish type, 5500 lb. from 534.18.

148.10 (148.23) **CULVERT** 207' Constructed 1849. The semi-circular brick arch formed of 3 tiers of brick has an 8 ft. span and a 4 ft. rise. The parapet and coping are 2 ft. high. Spandrels, parapet and coping are coursed red sandstone, dense gray sandstone, and white coarse grain sandstone rubble. The river side of the culvert is collapsing and partially filled with debris (1971). No wings. Dike 500 yards east.

500 ft. dike, Superintendent House = north side - extends to 535.34.
149.26 149.36 WASTE WEIR The original overfall at this site was constructed in 1850. The present waste weir is a concrete frame with 3 gates for board inserts. The upstream wing has fallen and the concrete walls are collapsing. Wooden cribbing supports the bridge over the waste weir.

149.53 149.61 LOCK 60 8.385 ft. lift, constructed 1839, 1848-49. This is a composite lock with walls of coursed gray and red sandstone from a quarry on the ridge above the canal near mile 152. Hammer-dressed limestone and white sandstone are in the recesses. Remnants of timber facing boards 2x10 and 2x8, 10 ft. long, are in the walls of the chamber. The miter frame in the upper recess is exposed and rests on longitudinal timbers in the floor of the lock. The lock was rebuilt in 1872. A 150 ft. revetment wall on the lower berm is a remnant of a crib extension added in 1881. A rock wall extends 20 ft. downstream from the extension. A 20 ft. revetment on the upper berm is probably a remnant of a crib fender.
The flume, on the berm 28 ft. from the lock, has a concrete frame control gate with 2 gates for insert boards. The spillway is below the gate and is built of coursed gray and brown sandstone. There are no slots for stop gate boards at the upper end of the lock. The lockhouse was along the towing path and was clapboard on a foundation of red sandstone rubble. It was carried away in the March 1936 flood. A footbridge is across the upper recess.

The arch is formed of 5 tiers of brick with a 12 ft. span and a 6 ft. rise. The parapet and coping are 2 ft. high and are mainly white sugary sandstone and some red brown sandstone rubble. The spandrels are of coursed red sandstone rubble. The culvert was in use as a road culvert until 1924. A log and clapboard structure, 500 ft. up the hollow, was a construction office for the canal from 1838 to 1850. The arches

537.88 berm or embankment

537.90 sewer channel undermining canal, 88.00 ft. long, 8 ft. wide, 8 ft. deep (476)

536.86 access canal on south across canal, from west upstream. Bottom is surfaced with five rounded stones.

151.04 ft. bridge construction site, log.

Canal starts at crossing - Roby Gulfing - 1/2 mile from Strickland Tunnel.
1360 consists of 3 deck plate girders on trestle towers on the east and over the canal. 3 deck Warren trusses on concrete piers are over the Potomac River and one plate girder is on the west approach. The bridge was built by the Pennsylvania Steel Company, Steelton, Pa., 1904. A freight train derailed and buckled on the bridge on December 13, 1920 and 2 carloads of steel rods fell into canal. The railroad lifted the contents of 1 1/2 cars from the canal and the canal company dredged the rest from the canal and charged the railroad $40.30.

538.05 - Outcrop, 30 ft. ledge; shale and sandstone, dip 45° downstream, shale core.
538.10 - 538.20 - 538.25 - More shale and sandstone, dip 45° downstream.

A ledge on the berm is formed of gray shale and sandstone in beds 1 to 4 inches thick, Che- mung Formation. The beds strike N 40° E and dip 55° NW.

Prominent horizontal joint cuts rocks into angular cut blocks.
Scree line at back end - 538.25

151.38 (151.50) Outcrop A bluff, 80 ft. high on the berm, contains gray shale and some sandstone in beds 1 inch
thick, Chemung Formation. The beds strike N30°E and dip 30°NW. A prominent strike joint is at right angles to the beds.

151.48 (151.68) OUTCROP Ledges on the berm contain gray sandstone and shale, Chemung Formation. The beds strike N50°E and dip 37°SE on the east flank of the anticline. The west flank is covered.

151.49-151.66 (151.69-151.86) OUTCROP A ledge on the berm contains gray shale, Chemung Formation. The beds strike N50°E and dip 30°SE. The exposure continues west to an anticline exposed at Mitchells Rock. The beds strike N55°E and dip 30°SE on the east and 70°NW on west.

Diagram- 8" x 8" → 4" x 4"
Field notes p.

151.79 (152.00) OUTCROP A ledge on the upstream side of a ravine contains gray shale, Chemung Formation. The beds
strike N70°E and dip 70° to 80° NNW.

151.79-151.92 (152.00-152.13) OUTCROP A high bluff on the berm is formed of gray shale and sandstone, Chemung Formation. The west part of the exposure is sandstone with beds up to 4 ft. thick.

MP 152 538.75

152.01 (152.22) OUTCROP A ledge on the berm contains gray shale and some sandstone in beds 1 ft. thick. The shale is highly cleaved. The beds strike N40°E and dip 75° NW.

152.09-152.59 (152.30-152.80) Two bridges across the Potomac at this point were used during construction in 1839 to obtain earth for embankment. The lower bridge collapsed on January 15, 1840.

538.85 - ledge 30 ft. high, dip 45° upstream - shale.
538.92 - shale incline 100 ft. upstream.

152.14-152.18 (152.35-152.39) OUTCROP A ledge on the berm is formed of gray sandstone in beds up to 6 ft. thick.

Some highly cleaved shale in beds 2 inches thick is mixed with the sandstone. The beds form an anticline with a...
strike of N30°E and dips of 35°SE and 40°NW.

Diagram 8"w x 6"h -> 4" x 3"

Field notes p.

538.45: marl, 538.45 sandstone, 3-4 in. thick, strike N50°E, dip 77° towards 330°, 500 f. of discontinuous section. 539.06 - small rains.

152.40 (152.61) OUTCROP A ledge on the berm contains gray, fine grained sandstone with yellow specks in beds up to 4 ft. thick, Chemung Formation. The beds strike N40°E and dip 55°NW.

152.45 (152.66) OUTCROP A low ledge on the berm is formed of gray sandstone, Chemung Formation. Ripple marks are prominent on the bedding planes. The beds strike N40°E and dip 55°SE.

152.59 (152.74) OUTCROP A low ledge on the berm is formed of gray sandstone, Chemung Formation. The beds strike N40°E and dip 45° to 60°NW. Towards 300°.

MP 153: 539.73
152.36 (153.00) WASTE WEIR This structure is a concrete frame with 3 gates for insert boards. A gray sandstone
Rubble revetment is at the base of the waste weir. A drop to the valley floor is at the lower end of the spillway. Some Catskill red sandstone is in the spillway.

- 152.96 (153.10) LOCK 61 8 ft. lift, constructed 1839, 1842-539.84

This is a composite lock with a concrete facing on coursed brown sandstone rubble. The concrete replaced a timber facing in 1910. Coursed sandstone rubble walls are at the tail of the lock. Concrete coping is over the old stone coping. The circular quoins and coping on the lower end of the lock are white Ridgeley (Oriskany) Sandstone.

The flume on the berm is 25 ft. from the lock. It has a 2 gate concrete waste weir with insert boards. The flume below the waste gate is lined with gray sandstone rubble.

Notches at the head of the lock are remnants of old crib fenders. The lower berm revetment is 20 ft. long with embedded timbers and is a remnant of a crib fender. The stone for the lock is from a quarry in Twigg Hollow west of
LOCK 61
LOCATION 153.1 TO W
S1.4 TO C
Highly cleaned shale with sandstone beds 1 ft. thick. Strike N 45 E, dip 75° upstream.

Anticline, gray sandstone, up to 6 ft. thick, shale 2 with beds, Eldred.

Strike N 30 E

115° 6
115° 19
115° 30
115° 41
115° 52
115° 63
115° 74
115° 85
115° 96

End of strike.

115° 92°
115° 103
115° 114
115° 125
115° 136
115° 147
115° 158
115° 169
115° 180

Shale and gray silt sandstone exposed on bench. Strike N 40 E, dip 55° upstream. Beds 1-4, shale thick.

80 ft. bluff of shale with some sandstone, 1 ft. thick. Strike N 30 E, dip 30° upstream. Prominent strike joint at right angle to bed, spaced 20 ft.

Anticline, downstream side dips 37° downstream; upstream limit correct, in gray sandstone and shale.

Shale, shale N 50 E, dip 30° downstream; upstream continue upstream 5-114.95

Anticline in clays, gray sandy shale and sandstone 50 ft. high

115° 10
115° 21
115° 32
115° 43
115° 54
115° 65
115° 76
115° 87
115° 98
115° 09
115° 10
115° 11
115° 12
115° 13

40°
50°
60°
70°
80°
90°
100°
110°
120°
130°
140°
150°
160°
170°
180°

Shale, shale N 50 E, dip 30° downstream; upstream continue upstream 5-114.95

Large bluff of shale and sandstone. Sandstone about 1' thick in place, beds are 4 ft. thick.

115° 40
115° 51
115° 62
115° 73
115° 84
115° 95
115° 06
115° 17
115° 28
115° 39
115° 50
115° 61
115° 72
115° 83
115° 94
115° 05
115° 16
115° 27
115° 38
115° 49
115° 60
115° 71
115° 82
115° 93
115° 04
115° 15
115° 26
115° 37
115° 48
115° 59
115° 70
115° 81
115° 92
115° 03
115° 14
115° 25
115° 36
115° 47
115° 58
115° 69
115° 80
116.88
153.33
117.01
153.46

Boulders, 12 ft. high, 6 ft. run
Arch of boulders, 5 feet thick.
Rathern spread out, mainly red sandstones, some gray sandstones. Skin on arch. Rain
side of arch failing.

117.4
153.81

117.4
153.81

60°

117.6
153.96

117.65
154.00

Vertical black shale in trim, 6 ft. dip 45°
upstream.

117.75
154.09
117.18
154.13

Small Ridge, high-water, Omnigdon.
Jack 62
White out sandstone on cap and ends, reddish
forming bend of gray sandstone, some red brown
sandstones. Left pitched.
Ground thin weather.
Aperture fails, grey sandstone.
the lock. The lockhouse was clapboard on the towing path side of the lock with a sandstone rubble foundation. It was carried away in the flood of March, 1936. The upper end of the lock is walled up with stone and earth.

1849. The arch is 5 tiers of brick with a 12 ft. span and a 6 ft. rise. The parapet is 1 ft. high. The spandrels and parapet are mainly red sandstone rubble and some gray sand- -brick. Berm 16 rungments, white sandstone, + graystone; parapet; coping concrete (15.6h) stone. The river side of the arch is failing (1971).

153.50-153.60 (153.70-153.75) OUTCROP An anticline on berm is formed of gray sandstone and shale, Chemung Formation. The beds strike N40°E and a syncline is at the upstream end. Outcrops begin at 540.42.

Diagram 8"h x 6"w 4" x 3"
Field notes p.

153.81 (153.95) OUTCROP A sharp peaked anticline in Chemung sandstone is on the berm.
153.56 (154.09) OUTCROP A ledge on the berm is formed of gray shale, Chemung Formation. Vertical cleavage is prominent. The beds strike N40°E and dip 45°SE. Outcrop continues upstream dip 45°-50° upstream to 540.73

An embankment bridge over the Potomac in this vicinity was built in the summer, 1839. It was carried away in a freshet shortly after its completion.

MP 154.540.72

153.91-154.00 (154.05-154.14) OUTCROP In this distance there is a sequence of small, tight syncline-anticline-syncline and a broad anticline in gray sandstone and shale, Chemung Formation.

Diagram 8th x 6 1/2" 4" x 3"
Field notes p.

154.00 Soil edge H.B. 0 540.82

154.00 (154.12) LOCK 62 10 ft. lift, constructed 1838-39, 1848-49. This composite lock has a chamber of coursed gray and red sandstone rubble which was faced with timber planks. Bolts and some timber remain in the walls. The recesses were faced with concrete in 1910. The coping (409)
below the lower recess is concrete. Cut white Ridgeley
(Oriskany) sandstone is at the recesses and at the ends of
the lock. Notches for crib fender timbers and an old re-
vetment are on the upper berm side. 20 ft. revetments at
the lower end of the lock are probably remnants of crib
fenders. The stone for the lock is from a quarry in Twiggs
Hollow above Lock 61. The flume is at the base of a 30 ft.
cliff on the berm. An overfall spillway lined with gray
sandstone rubble is at the lower end of the flume. A
single gate, concrete frame control is in the flume at the
tail. A footbridge is at the head of the lock. The lock-
house was on the towing path side. It was clapboard but
only the concrete foundation remains. Chemung grey shale
crops out in the cliff on the berm. The beds strike N40°E,
dip 25°SE. A holding basin was just above the lock. Dam
no. 7 was planned to be about 1 mile upstream on the
Potomac River and a feeder would have entered the canal at
the tail of Lock 62. The Baltimore and Ohio Railroad was
graded to provide for the pool behind the proposed dam; the
dam was not built.

Old turning basin 200 ft. downstream, old hollow on stream.

154.12 **WASTE WEIR**, mouth of Athey's (Tunnel) Hollow. This is
an overfall, 100 ft. long and 16 ft. wide, constructed in
1849-50. A concrete frame, 3 gate, board insert waste weir
was placed in the overfall about 1913. The original
overfall is coursed gray and red sandstone rubble with a
few blocks of white sandstone. Two stone overflow channels slightly curved
around to meet in common stone niited channel. Slime mantle round mine edge
downstream on river side - appears to drill hole 3 in long, 3/4 in. diameter.

Diagram 8 in. x 6 in. 4 in. x 3 in.
Field notes 8/3/71, p. 7.

154.23 (154.36) **OUTCROP** Chemung olive gray shale is ex-
posed on the towing path. The beds strike N40°E and dip
30°SE (away from canal

154.33 (154.45) **OUTCROP** Chemung olive gray shale is ex-
posed on the towing path. It is platy and fissil. The beds
strike N40°E and dip 45°SE. 3 sets of joints at right
angles to beds cut the shale.

154.34 (154.46) Lock 63 1/3 10 ft. lift, constructed
1838-39, 1848-49. This is a composite lock with walls of
coursed rubblr, mainly white sandstone and some gray sand-
stone. The chamber was faced with timber. The concrete
faces of the recesses were placed in 1910. There is a con-
crete coping at lower end of lock. Coping at the upper
ends of the lock are cut white sandstone. Wing walls are
coursed gray sandstone rubble. A miter frame is in place
in the upper recess. Notches in the concrete are for crib
fenders. A revetment wall, 20 ft. long on the berm at head
of lock, is probably the remnant of a crib fender. Stone
for the lock is from Twiggs Hollow above Lock 61. A "rail-
road" was used to haul the stone to the lock. The flume is
on the berm and is lined with gray and brown sandstone. An
overfall with a concrete frame for insert gates is at the
upper end of the lock. A snubbing post is at the head of
the lock on the towing path side. An outcrop on the towing path opposite the lock is formed of gray shale, Chemung Formation. Slickensides are prominent on bedding planes.

There is a bridge over the lower recess. Sandstone blocks from the upper recess are along the towing path. The lock is formed of gray shale, Chemung Formation. Slickensides are prominent on bedding planes. There is a bridge over the lower recess. Sandstone blocks from the upper recess are along the towing path.

154.45 (154.57) **LOCK 64 2/3** 10 ft. lift, constructed 1838-39, 1848-49. This composite lock is similar to Lock 63 1/3. The chamber walls are coursed rubble gray and red sandstone from a quarry in Twiggs Hollow. It was brought to the lock by "railway". The chamber had a timber facing. Cut white sandstone is in the coping below the lower recess.

There is no coping in the chamber area. The flume is on the berm, 28 ft. from the lock. A concrete frame spillway control is at the tail of the flume. The upper end of the flume is lined with coursed red and white sandstone. Notches at the head of the lock was for timbers for crib fenders. A footbridge is over the tail of the lock. The lock house
was formerly clapboard on a rubble foundation. Only the
corner remains on the side of the towing path. An out-
crop of gray shale is on the towing path. The beds strike
K30°E and dip 30°ESE.
Small boulder 10 ft. above 50 ft. below towing path = bed of shale, south? - upright?
54°13.6 - 54°41.40, crossing on towing path edge = shale beds up to 2 in. thick, strike parallel to
N40.54, dip 40°41.40. Bed = N40.54.
154.52 (154.65) LOCK 66 10 ft. lift, constructed 1838-39.

1848-49. This composite lock has walls of coursed red brown
and gray sandstone rubble from a quarry in Twiggs Hollow
above Lock 61. It was brought to the lock by a "railway".
The chamber was formerly faced with timber. Cut white sand-
stone is in the recesses of the lower gates. The gate re-
cesses were faced with concrete in 1910. Notches for
timbers of crib fenders are at the junction of the wings
and the lock walls at the head of the lock. A footbridge
is over the tail of the lock. The flume is on the berm, 25
ft. from the lock. A concrete frame, 2 gate, drop board
control structure is at the head of the flume. A carpenter
shop was on the berm. It was a frame building, 40 ft. 4
Lock 66 - berm side

Lower entrance
TP: Red - Gray

Cone
27 ft. 10"
SS: Red

15' pers.

213.0
Tunnel portal

Junction - Thomas Rd. = N 581
63599.5

Junction - Altam. & Thomas Rd. 63599.6

RT - Thomas Rd. = Altam. Ave - 63599.6

R.T. - Altam. Ave = Mowins Ave - 63594.6

R.T. - Mowins Ave = Redcliff Rd. - 63592.8

Crank bridge = 63592.8 - can read. - Redcliff Club Rd.
inches long and 20 ft. 2 inches wide. A creosote dip tank was at the north end of the shop. It is a vertical cylinder, 28 1/4 inches outside diameter, 6 ft. deep and formed of 3 1/16 inch steel plate. The top is at ground level and there is a concrete wall on two sides. The tank rests on a concrete slab that was elevated to allow the building of a fire beneath. An old race to the shop is just below the upper recess but is now blocked off. Chemung gray sandstone crops out at the base of the flume spillway.

DEEP APPROACH CUT excavated in 1836 to 38. Additional work was done in 1847-50. The cut, 2,322 ft. long, up to 79 ft. deep, involved 213,229 cubic yards of excavation and cost $218,000. The cut is in Woodmont dark gray, splintery shale, which strikes N30°E and dips 30°SE on the towing path side and 45°NW on the berm. Slides in the cut are common. The Tunnel Trail leads off the towing path at 154.71, crosses summit of Tunnel
244.05 North portal

60°

60° 200° N of N portal

Axis of anticline across soft rock g

North portal

End of back wall

45° 10° View north

At Tunnel Hill Railroad embankment

20° 200°

Tunnel Approach Cut
Hill and descends on the south to the South Portal. Terraced spoil banks of shale are along the trail and the mouth of the old ravine, formerly connected with Atheys Hollow, is now blocked by a graded spoil bank. From 154.73 to 154.98 (154.85 to 155.10) the towing path is on a timber platform 1,285 ft. long. The canal crosses the apex of the anticline at the north end of platform. 700 ft. north of the tunnel, Woodmont gray shale with a rusty brown surface stain is exposed in the cut. Vertical cleavage in the rock is parallel to the strike of the beds. The beds strike N30°E, dips 37°NW increasing to 55°NW near the tunnel. Slickensides are well developed on bedding planes. The slickenside surfaces are smooth down dip indicating that the top beds moved down relative to the lower beds. 300 ft. north of the tunnel, joints are well developed on the dip slope cut face. Strike joints are at right angles to the beds and spaced 3 to 5 ft. Transverse joints are spaced
20 ft. Beds near the tunnel are 1 ft. thick and steel rods have been driven to hold beds in place on the dip slope.

Rock slides were common in the area of the dip cuts. Some developed slickensided bedding planes on the towing path side and on joint surfaces on berm. A large slide in November, 1857 required 2 months to remove; another large slide in 1969 almost blocked the south portal of the tunnel.

*Agency with long and short distances 154-74

154.99-155.58 (155.10-155.70) **PAWPAW TUNNEL** The tunnel is 3,118 ft. long and in 1840 when it was holed through it was the longest tunnel in the United States. Its construction covered the period June 1837 to 1850. The tunnel axis is N6°30'E. The maximum depth beneath the summit of the ridge is 362 ft. Headings were driven from the portals and from 2 sets of double shafts. The shafts in each set were spaced 23' 15 ft. Each of the 4 shafts were 8 ft. diameter. Shafts A and B were 418 ft. from the north portal and were 126 ft. deep. Shafts C and D were 893 ft. from the north portal.
North Portal

Tunnel entries - white concrete, gravel, sandstone and shale.

Arch - white granite, sandstone, cut flowing at 25 ft. in brick, replacing cut blocks.

Fissile, cleaned shale

South Portal

Drag sandstone and shale.

(503)
Tunnel started 1836

1836 May 8 - Montgomery - picked men - had some guns & spotters chats
1836 May 5 - Alex BK at Milliner Av. & Capern, Man's starting death at Ed. Top. April 25
desertion spread to Pretoria Rich

1837

Montgomery 250 men at work

February 1, 2 or 3 days of cannonade demonstration by men
May 15 - Montgomery in need of $1000 as he used funds to pay passage 3 miners from England.

1836 Montgomery up some men to maintain order - hangmen & others

1837 - January 5. Montgomery discharged 7 men. After an incident the Chief Engineer wants Montgomery to suspend work.

1838 5/8 & 7 £ 5/10

3 meals 3 who - some cleaning - Pretoria Rich.
Co. offers 50c on dollar - lazy wants all in nothing
P2 paid back off to Pretoria - 5/10
5/15 - Milca received
5/19 - Dobson do not know where & by grievance
blame Co. for suffering & money - cannot find families - seek revenge

(505)
11/27 - 3 men killed in shaft D - fell down shaft when box in bucket broke.

Shaft B - 2 killed, 2 wounded & 1 dead.

D - 4 killed, 0.

1 purposely killed - heard arguments, shot dead.

2/15 - Miners surrounded tunnel offices, threatened to quit

Miners of other crews, Thos B. Anderson, J. Daniels.

Told advance adjustment in contract to keep crews in peace.

Men's advance 10. M - all money from office.

M - could be mined financially. C10 in difficult financial

position.

Dec 1938

497 Miners 110 Miners of Tunnel

6/23 - Trouble at tunnel, men threatened to quit, work abandoned. In January 1938,

secured a loan of $75,000 at 8% interest, then retired to

Cable, to organize a tunnel. Stopping funds - military forces,

cable law.

6/26 - Troubles, men refuse to work.

Men flogged one of bosses who tried to get them to work.

Men threatened to leave, then refused to work.

Dec 1938

134 men 97 miners.

112/123/day

100/0.91/day

160/135/150/day

2/21/38 - 400 hands at tunnel not paid for 2 months,

Threaten & destroy works.

2/13/38 - M on brink of insolvency, miners threaten to quit.

Men thrown into a mad.

M - life not safe if he

tempts to come in tunnel without miners.

6/10/38 - Minersaverning all miners.

June 8 - 2 excellent miners killed a man killed in leaving shaft - attacked by

20-25 men with clubs

also met Jefin O'Leary (506)
1839

8/12 - Attack made on Dutchmen on Sept. 28th by party of men from
Butte's camp. Blown up - Attack on Sun. 8/11 - early.From
Nevada, 400 men, 300 all drove in ass. Extensive vandalism done, carried off "110 each
3 pounds of flour, etc. 14 men wounded. Attack: freemen between
Dutchmen and Irish.

May 4 - Oregon & Kame suspended - no more disturbances
because of unemployment. 300-400 laborers marching along by
and with arms forany occasion

4½ - 17½ years
10/27/39 - 14 sentenced to penitentiary, 10 persuaded by few &
empennement, one went & lived & for fuel, I acquitted
Third jury recessed, found with hand of Hogan assassin.

1839 March - 15 mile C. area - trouble with armed men

1839 Oct 28 - Dutchman injured by Irish - alright in tunnel area

Nov 8 - Black soldiers stationed in cooperation with 1840 - Cal. State
continued until 1847.
1840
Tunnel Hol6 From 6/5-

1846 - Jan. 8: Montgomery arrested Tuske - Bcakley's.
They say captured in raid by Dr. Henry's Hol. - Burned.

1849 - 11/13 Irish workers every Tunnel -
Mc Sullivan a Day, contractor
and W W. Brady Co.

1850 - 4/14 Men quit of Tunnel - went down + L E1 - stop work
Acted under influence of alcohol & disc rated.
aler 2/14 (508)
and were 187 ft. deep. The shafts were completed in 1839 and upon completion of the tunnel they were left unfilled to reduce weight on the lining. They are capped by a brick well with a concrete lid and mounded over with earth. The headings were joined and the tunnel holed through on June 5, 1840 at a point 1503 ft. from the south portal. The tunnel excavation was 27 ft. wide and 25 ft. high. The span of the lined arch is 24 ft; the waterway is 19 ft. wide; the towing path is 5 ft. wide; and the depth of water 7 ft. The total excavation is 78,874 cubic yards, overbreakage and rockfalls in tunnel during construction 6,628 cubic yards. The tunnel is lined with 5,800,000 bricks. The lining is 13 inches thick with brick, 9 x 4 1/2 x 2 1/4 inches laid long-wise to the tunnel axis. The 2 1/4 inch face of the brick shows in the tunnel. The lining is up to 7 layers thick. Weep holes are at the springing line. Dry backpacking over the arch consumed 12,000 cubic yards of material. The tunnel portals,
wings and arch for 26 ft., 3 inches in from the portals are cut blocks of white coarse grained Ridgeley (Oriskany) Sandstone. A rectangular stone, 22 inches high, 26 inches wide, above the keystone at the north portal is inscribed J. M. Coale, President 1850. The keystone at the south portal is inscribed C. B. Fisk, Engineer. A swing boom at the north portal was used for lifting and dropping timbers into slots of the stop gate. The approach cut at the south portal is 200 ft. long, involving 21,000 cubic yards of excavated material. It was completed in 1838. At the top of the hill, above the tunnel, 6 alinement stones, each 10 inches square and 10 inches above the ground. The groove on the top of the face across the stone is at right angles to the tunnel axis and was used for distance measuring.

The small hole in the groove was used for alinement. Cost of excavating the tunnel was $317,000; brick masonry $78,400; and shafts $44,000. A wooden tramway was used in the

(510)
tunnel in 1849-50 for trimming and placing the arch. A wooden tramway also was used in northern approach cut to haul spoil. The original contractor (1836-46), Lee Montgomery was a preacher by vocation and built a tunnel on the Dansville and Pottsville Railroad in Pennsylvania. He went bankrupt in 1846. There was severe labor trouble at the tunnel from 1837 to 1839 at which time up to 497 laborers and 116 miners were at work in the tunnel. After 1872 a semaphore signal at the west end of the tunnel was used to control traffic on the 4,212 ft. of single lane waterway at the tunnel and the northern approach. The tunnel lining was repaired 1966.

Note - The tunnel is closed from November 15 to April 1; use the tunnel trail.

lomen House A large 2 story frame house, L-shaped in plan with brick foundation, is on the north side of the towing path. The house was built around 1850 and is situated at the point where the path crosses the river. It served as a tollhouse for the railroad. The building is a two-story frame structure with a gable roof and features a central entrance. The tunnel trail passes through a small tunnel just to the west of the house. The trail is marked with a semaphor at the west end of the tunnel and the northern approach.
occupied by the Division Superintendent of the canal.

MP 156 = 566.70

156.08 (156.33) **HIGHWAY BRIDGE** A Warren, curved-chord, pony (open) truss, constructed in 1932, carries Maryland Highway 51 over the canal. A holding basin for the south portal of the tunnel was north of the bridge.

156.18-156.47 (156.40-156.69) **MITCHELLS NECK CUT** The canal crosses a terrace in a cut up to 40 ft. deep. Sand and gravel up to 10 ft. thick overlying Chemung gray shale and sandstone are exposed in the cut. The rock beds strike N20°E and dip 60°SE. Parkhead fine grained gray sandstone is on the north limb of an anticline at 156.43 where the strike is N20°E and the dip 60°SE on north, 20°WNW on the south.

156.03 (156.33) **HIGHWAY BRIDGE** A Warren, curved-chord, pony (open) truss, constructed in 1932, carries Maryland Highway 51 over the canal. A holding basin for the south
This is a single span, modified Baltimore truss, constructed 1905 by the Pennsylvania Steel Company, Steelton, Pa.; the expansion bearings, consisting of a nest of cylindrical rollers, can be seen on the abutment along the towing path. On berm abutment the bridge is on a fixed bed plate. The rollers on the towing path side permit adjustment of the bridge to thermal expansion and contraction.

156.46 (156.67) WASTE WEIR This structure was built in 1849-50 as an overfall 100 ft. long with a drain 16 ft. wide. The walls are hammer-dressed, coarse, pebbly white sandstone. The present waste weir is a concrete frame with 3 gates for insert boards. A wooden bridge is over the gate. There is a 15 ft. drop over bedrock at the lower end of the waste channel. Chemung gray shale is exposed in the waste channel and the beds strike N55°E and dip 20°35'. Old spillway on north shore as deep in wall on north side of channel below breach; deep 3 ft. x 10 ft. long; log sill fills gap now.

156.51 (156.71) OUTCROP An anticline on the berm con-
Falls Church, begin 65810
end 66074

Pawpaw - west side, weir, 3 concrete gates under wooden bridge, round, no paddle gates. Masonry (abm) surrounds weir.

Sandstone

5 steps down + 7 fl. deep at end.

Mitchell Cut
west end

(514)
tains Chemung gray shale with beds striking N35°E and dip-
ing 35°SE on the east limb and 40°NW on the west limb. 200
ft. upstream is a syncline with the strike N40°E and dip
40°NW on the east limb and 60°SE on the west limb. Ripple
marks are prominent on the bedding planes.
557.35' at west end of curve; east end of anticline limb on canal.

156.61 156.80 OUTCROP Cuts on Western Maryland Railway,
557.42’ W of and on north side of canal, gray shale, dip 40°SE; basin in NW limb,
strike parallel to canal.
where it rejoins canal, expose the axis of an anticline.

The beds strike N30°E. The dip at the base of the cut is
45°SE, but half way up the face it is 10° to 15° NW. The
anticline is in Chemung gray shale overlain by terrace
gravel up to 45 ft. thick in the upper part of the cut on
the northeast. The gravel contains rounded boulders up
to 2 ft. size in orange, silty sand.

156.81 Old oak branch road & old oak grey - not seen.
156.81 557.58 Purline Run H.B.O.
156.97 Canal company cement on sides of terpact
157 AP 557.69

157.02 (157.20) OUTCROP A cut on the Western Maryland
Railway exposes Chemung gray shale with sandstone beds up
to 4 ft. thick. The beds strike N30°E and dip 45°NW. Just
to the west is another outcrop in a railroad cut in which
the Chemung gray shale strikes N30°E and dips 60° to 70° NW.

A small anticline is near the center of this exposure.

157.10 (157.27) CULVERT 211, PURSLANE RUN (Greenville
Hollow) DAVIS FARM ROAD CULVERT, constructed 1838-39, 1847-
still in use as a road culvert. 49. This structure was used as a road culvert until 1922.

The arch stones are cut sugary gray to white sandstone from
quarries at Town Hill. The arch has a span of 14 ft. 24
ringstones and a keystone are in the face of the arch. The
inner part of the arch is brick. The abutments are 5 ft.
high and made of blocks of red to gray sandstone quarried
in the vicinity of culvert. The parapet and coping are 2
spandrels: concrete
ft. high and are now concrete. The wings are coursed rubble
red and gray sandstone with some white, pebbly Ridgeley
(Oriskany) Sandstone. Fossil imprints are prominent on the
face of the blocks. A 15 ft. embankment is above the coping.

On the berm the culvert extends under the Western Maryland
Railway with a concrete arch.

The site of a canal cemetery is on the low, rounded terrace along the towing path just east of the culvert. The headboards are gone and little remains to identify the site. Canal cemetery on the 51 at Sulphur Spring.

157.24-157.49 (157.43-157.70) TERRACE A gravel-strewn upland, 10 to 15 ft. above the railroad grade, 55 to 65 ft. above the river, rises inland to 200 ft. above the river at the top of the hill. The gravel exposed along the railroad consists of cobbles and boulders, up to 1 1/2 ft. in diameter, in orange brown silty sand. Not visible in summer.

158.25-158.57 (158.44-158.76) TERRACE Cuts on Western Maryland Railway expose gravel 40 to 60 ft. above the river.

158.57-161.53 (158.69-161.70) OUTCROP A long section of the Chemung Formation is exposed in cuts on the Western Maryland Railway westward to Lock 67.

Diagram 3 tiers of profiles per page—each pg., 8" x 14" = 4" x 7", 5 pages. Field notes 11/11/69.
153.56 (158.79) **CULVERT 212 BECKLEY_FLAT**, constructed
Fairplay arch.

1846-49. The arch is hammer-dressed sandstone from a quarry
on Town Hill. The arch has a 12 ft. span and a 6 ft. rise
with 16 ringstones and a keystone in the face. The parapet
and coping are 3 ft. high and are concrete on the towing
path side. Limestone coping is on the berm. The wings are
coursed gray sandstone rubble. The arch is sagging on the
west side and the culvert is filled to the top of the arch
15 ft. above coping.

(1971).
Elev. on WMRY - rel. +51.64, 1 ft. rich, dip 30°SE.
MP 159 - 559.65
159.16 - construction date on berm wall adjacent to WMRY - 1905
159.00-161.30 (159.22-161.52) **EMBANKMENT BRIDGES** Three

temporary bridges were built across the Potomac River to
West Virginia (Virginia) during construction of the canal
to obtain embankment material. One bridge to Coxes Island
(159.00), built in 1839, was carried away in the flood of
September, 1839. It was rebuilt and carried away again in
the flood at the end of January 1840. It was rebuilt again (519)
131.95
2/5/71

For Old House

(250 ft.)

At WMP, surf. - shale, dip 45° upstream.

Front grading, clay shale
with S. up to 4 ft. high.

Old Men -

FEB 71

Free and sandy, lawn, part of break - mainly Tor.

Directly, partly: tuff, coping at ground. Some concrete
is known, local areas.

North side of chimney fitted,
partially cut gray from sandstone and red from
sandy sandstone, not coping.

Concrete over Tor blocks. Concrete in Tor area
at upper end of break. South side of brick
north blocks up to 3' long x 1' high. Coping of potsh
sandstone; spillway same Tor and ad. red from sandstone.

Tor had wooden chimney pieces.

250 ft. wide, break is a wall on under side made
of ad. red from sandstone.

Burn side of track at grade in

Oldmen area. South side on altered plain

No way between tor 7071
Aug.-Aug. 1840. The second bridge was to Malcolm Island, built in 1838 (160.40) and the third bridge, 1 mile east of Town Creek Aqueduct built in 1839 (161.30). They were carried away in the flood of January 15, 1840, rebuilt in August 1840; carried away again on January 8, 1846 by ice; rebuilt in the spring of 1846, and carried away, July 10, 1848 by a freshet.

159.50 (159.72) CULVERT 213 Some construction was done on this structure in 1837, but it is questionable if it was completed. There is no evidence of the culvert now (1971).

160.08 (160.20) WASTE WEIR The original overfall at this site was constructed in 1846-50. It was built of red and gray sandstone coursed rubble. The present waste weir is a concrete frame with 3 gates for insert boards. 3 large cross timbers are in the footing in the spillway. Double masonry cast.

161.53 (161.70) LOCK 67 DARKEYS LOCK 8 ft. lift, con-
Canal Cemetery - on tawpark side pick early g
channel culvert at Keeps - on far Rhine. No handling
handbrake.

205.30 0.1642
206.10 Mile 158

206.85 0.1642
(158.13) Culvert - filled to arch - 11'-2" stone and concrete
arch. 4'-11" concrete parapet abut sandstone
arch.

207.06 Mile 159
207.7 159.7
207.95 For Culvert
208.05 Mile 160

208.25 Locate oval, Culvert 3 frames with sandstone
stone walls. 6'-6" of fill. Old layers.
Wooden fittings at lower center go in.

Stone masonry and sandstone lined rubble.

(522)
structed 1838, 1848-50. This was originally a composite
lock, but the chamber and berm coping were later faced with
concrete. The rest of the lock is coursed rubble, mainly
purplish red Catskill sandstone. The towing path coping is
cut red purple sandstone, some pebbly gray sandstone and
limestone. Coping at the circular quoins is Catskill red
sandstone. The wings and the spillway for the flume at the
lower end of the lock are red sandstone. Some white Ridge-
ley (Oriskany) sandstone is in the spillway. The flume is
on the berm, 25 ft. from the lock. A 15 ft. mound on the
upper berm is probably the remains of a crib fender. Notches
for crib fender timbers are on the upper towing path and
berm ends of the lock. Slots for insert boards of a stop
gate are at the upper end of the lock. Sandstone blocks
at the west end of the lock are grooved by ropes and the
scraping of boats. The lockhouse was formerly along the
towing path but it was carried away in the flood of March
Concrete Box
Location 162.5' to W
23.0' T&I C

Canal

Towpath E

Concrete Room 5' square
Concrete above door

Concrete

Top of room is covered with earth

Visible from west
Not easily seen from east

Lock 67 = 572.65
Canal = 572.75
Lock 67 = 572.89
Page 527 is void.
remains of the house.

161.60 (161.74) CULVERT 215 BIG RUN Constructed 1838, 1846-49. This structure served as a road culvert until 1926. The arch has 5 tiers of brick with a 1/2 ft. span and a 6 ft. rise.

The parapet and coping are 2 ft. high and are reddish gray Catskill sandstone coursed rubble. The wings are reddish gray sandstone rubble. Cuts on the Western Maryland Railway and Maryland Highway 51 expose Catskill red sandstone and shale. The beds strike N35°E and dip 30° to 45°SE. Exposures of red beds are terrace gravel continue west in the railroad cuts to Town Creek. 10 ft. embankment above coping.

162.18 (162.31) TOWN CREEK (no. 10) AQUEDUCT Constructed 1837-40, 1845-49. Willis Hatch, contractor, absconded 1838, leaving large debt. The aqueduct has a single segmental arch with a 62 ft. span and a 15 ft. rise. The arch has a 43 1/2 ft. radius and 42 ringstones and a keystone are in
archstones and skewbacks are rusticated cut black limestone, 2 ft. to 4 ft. long. The abutments are 2 ft. high above low water level and are founded on bedrock 3 ft. below the low water level. The parapet and coping are 7 1/4 ft. high with the coping 29 ft. above water and 32 ft. above the foundation. The towing path parapet is 7 ft. thick at the top and 7 1/2 ft. thick at the base. The berm parapet is 5 ft. thick at the top and 5 1/2 ft. at the base. A belt of hammer-dressed, white sandstone is on the face of the aqueduct, 1 ft. above the keystone. The outer facing of the parapet and the spandrels are scabbled, reddish purple Catskill Sandstone except above the arches where the parapet is hammer-dressed white sandstone. The inner facing of the parapet is hammer-dressed reddish brown sandstone, dark gray gritty limestone and some white sandstone. The coping is hammer-dressed coarse grained pebbly white sandstone. Butt-
resses at the junction of the wing walls and the aqueduct are scabbled white sandstone. The wing walls are scabbled, reddish purple Catskill Sandstone and some white sandstone. They are battered. The approach walls are Catskill Sandstone coursed rubble. The limestone (Tonoloway Formation) in the structure is from Hatchs quarry, near the mouth of South Branch in West Virginia. The white sandstone (Ridgley Formation) is from a quarry on Town Hill. The reddish brown and purple sandstone (Catskill Formation) are from small quarries along the line of the canal near the aqueduct. An iron railing was placed on the towing path side of the aqueduct in 1856 but none remains (1971). A road formerly passed under the aqueduct and was in use to the early 1900's. On the berm, the parapet east of the keystone has fallen and the buttresses have moved out from the wing walls (1971). Siliceous material in the limestone ringstones stand 1/4 inch in relief where solution has
in 1838. Willis Hatch, the original contractor for the aqueduct absconded in 1838 leaving large debts.

Western Maryland Railway Bridge no. 1474 is 100 ft. north of the canal. It has 2 short deck plate girder spans at the ends and a long deck plate girder in the center. It was fabricated by the Pennsylvania Steel Company, Steelton, Pa., in 1904.

An outcrop in Town Creek above and below the aqueduct is formed of Chemung gray sandstone which strikes N40°E and dips 40°SE. [A waste weir constructed in 1846 was formerly just west of aqueduct on the berm side.] It emptied across the right bank of Town Creek. The overfall was 100 ft. long with a 16 ft. drainway. No trace of it remains now (1971).

A broad flood plain area, between Town Creek Aqueduct and Lock 68, formerly was known as Harness Farm Bottom.
Loc. 68: 2 gates, concrete, broad, no pardelle; limit on form at front of lock under bridge. Lower extension; length is 50 paces long on form.

Old gate or gate, same main gate, 60-50 paces later line. Old roadway at water level has along extension, parallel to canal, partly culled.

Town Creek Aqueduct

Spandrel fallen

W 3′

Straight 3′

20°

46 = 6 ft

1′

8′

2′

2′

11′

2′

4′

E

(533)
162.43-164.32 (162.58-164.62) OUTCROP A long section of Devonian rocks is exposed in the cuts along the Western Maryland Railway.

Diagram of section 8 tiers, each 6" long = 3 pages each 8" x 11" original 4 x 7 reproduction Field notes 11/11/69, p 4-7.

1837 to 38, 1847 to 1849. This was originally a composite lock with 1,195 perches of coursed rubble in the walls and faced with timber. It is now faced with concrete except for dense gray sandstone in the coping at the quoins. The wingwall and spillway on the lower end of the lock are hammer-dressed Ridgeley (Oriskany) Sandstone in blocks 4 x 4 x 1/2 ft. The flume is on the berm and has a concrete, 2 gate, insert board control structure at lower end beneath the bridge. The lock had a lower extension but it is now a pile of rubble 150 ft. long on the berm with remnants of parts of the timber of cribs in the revetment. Some timber from the

Profile of bridge at lock 68 = scalar hues.
is at the lower end. A revetment 15 ft. long on the upper
berm is the remnant of a fender crib. Sandstone blocks
from the lock are on the river side of the towing path above
the lock. The lockhouse is on the side of the towing path.

It is a 2 story frame and clapboard structure. A pivot
bridge was built over the lock in 1850. The gates of the
lock and the bridge were burnt by the Confederates on Feb-
ruary 3 and July 25, 1864. A new timber fixed bridge, 72 ft.
long was constructed over the lock in 1865. It was rebuilt
as an iron truss in 1869 and was replaced by a Warren iron
truss span built in 1913 by the Oswego Bridge Co. The truss
is 54 1/2 and 14 1/2 ft. long on the north. The abutments
for the bridge are Ridgeley (Oriskany) gray sandstone from
a quarry on Patterson Creek in West Virginia. The road over
the bridge gave access to a ford across the Potomac River at
the mouth of the South Branch. A feeder dam was planned on
the South Branch, 1 airline mile above its mouth, in 1839.
The feeder was planned to follow along the west bank of South Branch to an aqueduct across the Potomac. Virginia, however, rejected a guarantee to a loan of $150,000 to construct it in 1851 and the plan was dropped. A pump was substituted for the feeder to augment the supply of water. The first pump was constructed in 1855 to 1857 behind the lockhouse at Lock 68. Two steam engines ran the pump and raised the water 24 ft. from the well which was connected to the river by a culvert. The pump was unsatisfactory and was out of repair in 1862. It was scrapped in 1867 and the boiler sold in 1868. The site of the pump was 200 ft. SSW of the lockhouse on a stone cribbed, low mound, 20 ft. in diameter.

An outcrop of black sandy, brittle, fractured shale (Marcellus Formation) is at the north abutment of the bridge. The bedding is indistinct. To the north along the private road the beds strike N10°E and dip 60°E in the same formation. Dark gray to olive gray crumbly shale (Needmore Formation)
crops out on the berm side of the lock.

Potomac Forks N.&O. at Lock 68

164.72 (164.85) **WASTE WEIR** An overfall, 60 ft. long, built of coursed rubble on a timber foundation was formerly at the ravine just west of Lock 68. There are no remnants now (1871).

Two ravines are visible 200 ft. of lockline.

164.77-164.18 (164.90-165.31) **OUTCROP** Ledges on berm are formed of Ridgeley Sandstone in beds up to 20 ft. thick. A broad anticline with minor flexures is in the center of the exposure. The beds strike N40°E to N45°E and dip 38°SE on the east and 34°NW on the west. The sandstone is white with brown stain, fine grained and the upper part is fractured. It forms spines of rocks at the top of the outcrop.

The anticline is also prominent in the cliff along the Baltimore and Ohio Railroad across the river. A flood plain is 15 ft above the river and a terrace is 25 ft. higher on the West Virginia side of the river north of 164.91 (165.00).
Diagram of anticline
6"x8" \rightarrow 4"x4"

MP 165: 566.41

165.26 (165.40) BASIN A small basin is on the berm at 566.78
the curve in the canal.

165.30 (165.44) GULVERT 216 Constructed 1846-49. The
original culvert had a brick arch but it was carried away
in a freshet in 1887. It was rebuilt with the arch made of
hammer-dressed white sandstone on the face and bricks in
the barrel of the culvert. The arch has a 6 ft. span and a
3 ft. rise with 10 ringstones and a keystone in the face.

Abutments are 1 1/2 ft. high and the parapet and coping are
4 ft. high. Wings are at right angles to the face and are
falling. The face of the entire culvert, except the arch,
is coursed Ridgeley sandstone rubble. A 20 ft. embankment
is above the coping. The arch is bulging out and sagging
(1971).
65.53-166.30 (165.67-166.44) **TERRACE** A rolling, gravel-strewn terrace is 20 ft. above the river on the north side of the canal. The canal is cut into the terrace west of 165.61. A similar terrace is on the West Virginia side of the river.

MP 166 567.41/567.60 odometer adjustment

165.90 (166.06) **CULVERT 217 SEVEN SPRINGS RUN** Constructed 5/67.68 Crumps Mill Culvert

1847-49. The arch is sugary gray Ridgeley Sandstone with an 18 ft. span and 5 ft. rise. 20 ringstones and a keystone are in the face of the arch. The parapet and coping are 2 ft. high. All of the structure is coursed rubble, Ridgeley stone at right angles to face, 10 ft. long, 4 steps, 6 ft. wide and face white sandstone, except for the archstones. The culvert was originally planned with 2 arches with a span in each.

166.13 (166.31) **WASTE WEIR** This is a concrete frame with 5/67.82 3 gates for insert boards. It has rubble sandstone walls.

The date 1920 is in the concrete.

166.14-166.33 (166.32-166.51) **TERRACE** A cobble strewn
terrace is on the river side of the towing path. Rounded
boulders up to 1 ft. size from the terrace are in the tow-
ing path.

166.27 (166.47) LOCK 69 8 ft. lift, constructed 1838,
1847-49. Originally this was a composite lock but most of
lock now is faced with concrete. The coping at the lower
circular quoins is hammer-dressed white Ridgeley Sandstone.
The area below the lower recesses is faced with sandstone
rubble. The lower berm wing wall and the spillway of the
flume are roughly dressed Ridgeley Sandstone blocks. A 15
ft. revetment is on the upper berm and is possible the rem-
mant of a crib fender. The flume is on the berm and is 10
ft. wide and 7 ft. deep. A sandstone revetment is along the
flume. Blocks of coping from Lock 69 are scattered on the
berm west of the lock. Soil extends on the embankment at
3 July 1977.

An embankment along the berm is 7 ft. high. Outcrops
of the Mahantango Formation are in the hill on the side of
the towing path between Locks 69 and 70. It is gray-brown, platy shale. There is no lockhouse at Lock 69. Several canal boats were wunk with stone at the tails of Locks 69 and 70 after the canal ceased operations in 1924. Boats were cut upper out of lock, 0.4 miles west of Lock 69 at Lock 70.

166.51 (166.71) LOCK 70 OLDTOWN 8 ft. lift, constructed 1837, 1847 to 1849. Originally this was a composite lock but most of the lock is now faced with concrete except for the lower wings which are Ridgeley Sandstone in blocks up to 2 x 3 x 4 ft. and the coping on the towing path. A 15 ft. revetment on upper berm is probably the remnant of a crib fender. The concrete at the head of the lock has impressions from old crib timbers. The lockhouse is on the upper towing path side and is 2 story frame and clapboard.

The spillway to the flume on the berm is now walled up. A timber bridge was constructed over the lock in 1849 with 17 ft. clearance above the water level of the canal. It rested on stone abutments. It was rebuilt in 1886 as a timber bridge over stone abutments.

Old mill on north side of Rt. Potomac, east of road at Oldtown Bridge.
Lock is stone with 4" thick concrete veneer.
Lock House is intact 1871
Lock 70 and Lock House
Location N46.7 T5 W
17.9 T5 C
441

<table>
<thead>
<tr>
<th>single span, open Warren truss. Blocks of coarse grained sandstone along the towing path are from the lock. 700 ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>west of lock are 10-inch rounded boulders in the towing path. These are from adjacent terrace deposits. Picnic area.</td>
</tr>
<tr>
<td>166.83 (167.06) LOCK 71 8 ft. lift, constructed 1837, 1847-50. Originally this was a composite lock. The lower end of the lock and the lower wings are rough dressed blocks of Ridgeley Sandstone. Some concrete facing is in the lower recessed. The berm side of the chamber is partially dressed, coursed gray brown Ridgeley Sandstone and reddish brown Catskill Sandstone. The towing path side of the chamber is coursed rubble blocks of brown gray sandstone. The coping on the towing path side is white pebbly Ridgeley Sandstone.</td>
</tr>
<tr>
<td>There is no coping on the berm. The upper recesses are faced with concrete. Bolts for the frame of the timber facing are in the chamber. The flume on the berm is 35 ft. from the lock. It is 10 ft. wide and has a 2 gate waste</td>
</tr>
</tbody>
</table>
Lock House Intact 16-71
Lock - Stone-Concrete Veneer-Wood Covering
Lock 71 and Lock House
Location 1670 to W
17.5 to C
Lock 71

Lower end

Run cobbles in tongue 400 yds east of lock 71. 10' deep, rectangular & rounded canals.

Springs Top - pant house

N. Tarn - 1/2 mi NE Springs Top on Md 51 - pay phones, groceries, gas, services

Pay phones on Md 51 1/2 miles west of Springs Top.
structure, a concrete frame with insert boards, at the lower end. Bolts for timber fenders are on the lower wings. A
revetment 20 ft. long on the upper berm is probably a rem-
nant of a crib fender. A slot for stop gate boards is in
the stone on the towing path side at the upper end of the
lock. They are covered by concrete on the berm side.

The lockhouse on the towing path side is a 2 story,
frame, clapboard structure.

166.88 (167.11) WASTE WEIR This is a concrete frame
structure with 3 gates for insert boards. The wings are
of limestone, at right angles to face.
scabbled sandstone (Ridgeley). The wast weir replaced
old culvert no. 218 and an overfall 100 ft. long, with a 16
ft. drain opening, constructed in 1849. Masonry spillway 117 ft. long
adjacent to north weir.

167.06 CRUMP HILL Site of rail race

167.72 (167.95) ALUM HILL The deep cut is in Marcellus
shale along the line of a former shallow valley. The cut is
50 ft. deep at the north end, 32 ft. at the center, and 58 ft.
at the south end. The shale is dark gray to black, fissile
and splintery with partings spaced 1/4 inch. Occasional beds
of fine grained sandstone up to 1 inch thick are mixed with
the shale. The shale weathers brown and some beds are stained red on the surface. White coatings of gypsum (Calcium Sulfate) are on the lower beds near the towing path. Dense black shale beds up to 1 1/2 inches thick, in the center of the cut, contain disc-shaped concretions up to 6 inches in diameter and 1 1/2 inches thick. Crumbly shale in a 12 inch zone of vertical fracture planes is 200 ft. from the south end of the cut. Numerous irregular fracture planes are also at the south end of the cut. Shale in the south half of the cut weathers to splinters 8 to 12 inches long. At the south end the shale forms small chips and splinters. 200 ft. south of the cut is an outcrop of thin bedded shale (Marcellus) which strikes N65°E and dips 86° NNW.

A timber bridge formerly crossed the canal at the
north end of the cut. It was 100 ft. long, 15 ft. wide and 16 ft. above water level. Constructed in 1839, it collapsed on November 23, 1839 as a wagon enroute to Cumberland with beer kegs crossed; one man and a horse were killed. It was rebuilt in 1840 and a new timber bridge was placed in 1848. This was destroyed by the Confederates on August 25, 1864, but was rebuilt after the war. The bridge was in place until the beginning of the 20th Century. The original bridge carried a flume for water to Cresaps Mill.

167.78-167.93 (168.00-168.15) OUTCROP Marcellius black shale with beds striking N40°E and dipping 10° to 30°SE is exposed on the berm. A broad flood plain is on the river side of the canal extending to 170.64; a similar but smaller flood plain is on the West Virginia side of the river.

168.38 (168.60) OUTCROP A 60 ft. bluff on the berm is formed of Mahantango dark gray to olive gray, crumbly shale.
The bedding is hidden by fractures. The rocks strike N30°E and dip 60° to 80°SE. A similar but smaller outcrop is to the west. At 168.48 a ledge on the berm, 20 ft. high, contains dense highly-fractured, gray sandstone with 4 ft. of shale (Mahantango Formation). A smooth joint face trends N85°W and dips 70°N. A secondary joint trends N20°W and is vertical. Molds of fossils are prominent on the smooth faces of the joints. Crumbly gray shale on the east side of the outcrop is below the sandstone. The contact between the shale and sandstone strikes N30°E and dips 10°NW. Shale crops out to the west along the canal and the railroad in small discontinuous exposures.

168.74 (169.96) FOUNDATIONS Two foundations are on the river side of the towing path. They are built of partially dressed cobbles from terrace gravels. One foundation was for a bridge, the other probably for stock chutes. Bern? MP 169-496.05

168.93 (169.13) CULVERT 221 Constructed 1846-49. The...
face of the arch is hammer-dressed sandstone with bricks inside the barrel of the culvert. The span is 6 ft. and the rise 3 ft. 10 ringstones and a keystone are in the face of the arch. The abutments are 4 ft. high. The parapet and coping are 1 1/2 ft. high. Wings are at right angles to the face of the culvert. The culvert, except for the arch is constructed of coursed gray, fine grained sandstone rubble. The side of culvert joined to U-shaped conduit. 168.9 ft. above m. p. 168.93 (169.15) TERRACE DEPOSITS Large rounded boulders of gray sandstone up to 2 ft. in diameter, are in the stream below the towing path.

168.93-169.93 (169.15-170.15) FLOOD FLAIN Rolling meadows on the river side of the canal rise towards the level of the canal forming a terrace extending west. Numerous pine trees on the berm and on the hills to the north of the canal are typical of vegetation on the barren, thin soils derived from shale.
169.97 (170.19) OUTCROP Ledges on the berm contain

Braller (Woodmont) and Harrell gray shale. The shale is

splintery and strikes N30°E, dips 5°NW.

170.15 (170.33) CULVERT 222 Constructed 1846-49. The

archstones are cut gray sugary sandstone. 46,000 bricks are

in the inner arch in the barrel of the culvert. The span is

6 ft. and the rise 3 ft. 10 ringstones and a keystone are

in the face of the arch. The coping are 1 1/2 ft. high.

Spandrels and the parapet are coursed gray sandstone rubble.

The culvert is filled to within 2 ft. of the top of the

arch. (1971).

170.17 (170.35) OUTCROP Ledges on the berm contain Wood-

497.40

mont-Harrell gray shale and sandstone in beds up to 6 inches

thick. The beds strike N20°W and dip 36°SW.

170.45-171.09 (170.61-171.25) TERRACE Brushy slopes and

woodlands on the river side of the canal extending west are
up to 40 ft. above the river. A small area of terrace is also on the berm. At Culvert 223 on the river side of the canal is a prominent terrace knoll on which is located a barn. The high flood plain merges with the terrace at canal level in this area. 500 ft. east of Culvert 223 are rounded boulders of sandstone, up to 3 ft. diameter, on the side of the towing path.

170.66 (170.80) CULVERT 224 KELLEYS ROAD CULVERT Con- structed 1846-49. The structure was used as a road culvert until 1922. The archstones are hammer-dressed, gray sandstone. The arch has a 10 ft. span and a 5 ft. rise, with 16 ringstones and a keystone in the face of the arch. The arch in the barrel of the culvert is formed of 62,200 bricks.

The abutment s are 5 ft. high and the parapet and coping are 2 ft. high. Except for the arch, the culvert facing is coursed gray sandstone rubble. The culvert was originally planned to have 2 arches of 6 ft. span each.
2. Ridgeley Sandstone rubble, some Catskill brown sandstone and limestone; 581.1 perches of stone and 250 ft. of 16 inch coping are in the spillway. 12 inch coping is in the wings. The towing path formerly crossed the overfall on a wooden bridge resting on 7 concrete piers.

171.45 (171.67) OUTCROP A cut on the Western Maryland Railway exposes Brallier (Woodmont) and Harrell Shale. The beds strike N30°E and dip 10° to 15°Se. The flood plain on the West Virginia side of the river grades southward to a terrace 40 ft. above the river.
171.48 (171.70) OUTCROP A bluff on the berm is formed of
Brallier (Woodmont) and Harrell Shales in beds up to 6 inches
thick. The beds strike N15°E and dip 5° to 10°ESE.

171.60 (171.82) 498.65 Culvert? no evidence seen.

171.60-171.84-171.96) OUTCROP Brallier (Woodmont) and
Harrell olive gray shale in beds up to 1 ft. thick are ex-
posed in a cut along the Western Maryland Railway and in a
bluff below on the berm of the canal. A small cave, 4 ft.
high and wide, extending back 4 ft. in an anticline is near
the western end of the exposure.

Diagram- exposure along WMry. 14"x8" to 7"x4" 3 tier profile.

MP 172 499.14
171.88 (172.02) CULVERT 228 PRICE HOLLOW Constructed
1838-39, 1846-49. This structure served as a road culvert
until 1922. The archstones are hammer-dressed, gray sandstone.

The segmental arch has a 12 ft. span and a 6 ft. rise with
18 ringstones and a keystone in the face. There are 95,936
bricks in the inner part of the arch in the barrel of the

(560)
culvert. The parapet and coping are 2 ft. high. The face of the culvert, except the arch stones, is coursed gray sandstone rubble.

171.97 (172.11) OUTCROP Well-bedded, olive gray shale, Mahantango Formation is exposed in a cut on the Western Maryland Railway and on the berm of the canal. The beds strike N20°E and dip 35°ESE.

172.19 (172.33) OUTCROP A bluff on berm contains dense gray sandstone (Mahantango Formation) in beds 10 ft. or more thick. The beds in the western part of the outcrop are highly fractured. The beds strike N40°E and dip 30°ESE. Joints strike N60°E and dip 80°NW; n20°W, dip 80°SW.

172.38 (172.52) ALKYRES BASIN This is the site of a small basin on the berm of the canal. Basin begins at west end of embankment, 200 ft. across N-S.

172.59-172.85 (172.70-173.00) EMBANKMENT BRIDGE A temporary bridge across the Potomac was built curing construction.
of the canal, 1839-40 to, obtain embankment material from West Virginia (Virginia).

172.59 (172.73) OUTCROP An anticline in a ledge on the berm is formed of massive gray, glassy, medium-grained Ridgeley Sandstone in beds 1 to 10 ft. thick. 66 ft. of the sandstone is exposed and it is underlain by fossiliferous, deeply weathered limy sandstone and shaly sandstone, 20 ft. thick. Gray, thin bedded, fine-grained Coeymans-Keyser Limestone are at the base with solution openings up to 6 inches high. 35 ft. of the limestone is exposed. The beds strike N20°E and dip 20°ESE on the east limb. The strike is N25°E and the dip 35°WNW on the west limb. Joints strike N5°W, dip 80°W; N80°W, dip 70°N.

Diagram- 8"x8" → 4"x4" 1 profile

172.65 (172.80) EMBANKMENT BRIDGE A temporary bridge across the Potomac River was used during construction in
1839 to obtain material for embankment from West Virginia (Virginia).

171.80 (171.95) 4999] - 25 ft. along river, possible breaking between sand

and gravel entralain; rubble and earth.

MP 173 - 500.05. [500.00 only maintained, drain behind end of embankment & MP 173, up to 173.45]

173.02 (173.17) OUTCROP A low ledge on Maryland Highway

173.01 (173.16) 500.09 Remains of large, two-stem arbor; only 2 in. plants remain.

51 contains Needmore gray shale. The beds strike N30°E,
dip 30° to 40°Se. The east end of the Spring Gap Recreation
area is on the river side of the canal.

500.15 - 500.49 Spring Gap Recreation area, salmon 500.35 Bent camp, campings, springs,

fishes taken. Fishing limited.

173.07 (173.19) OUTCROP A low ledge on Maryland Highway

500.12

51 is formed of Needmore gray shale which strikes N30°E and
dips 30° to 40°SE.

173.13 (173.21) CULVERT 230 SPRING GAP Constructed 1846-

1848. The arch has a 6 ft. span and a 2 ft. rise. It is now

covered by a steel culvert on the towing path side and only
the sandstone coping shows. The berm side is covered by
a concrete highway drain. The inner part of the arch in
the barrel of the culvert is constructed of 28,786 bricks.

173.37 (173.38) OUTCROP A low ledge on Maryland Highway

(564)
51 contains Needmore gray shale which strikes N40°E and
dips 30° to 40° SE.

173.47-173.57 (173.47-57) OUTCROP Ledges on Maryland
Highway 51 and on the berm of the canal are formed of Ridge-
ely Sandstone. The beds strike N40°E and dip 45°SE on the
east limb of an anticline. On the west limb the dip is
33°NW. A prominent strike joint dips 57°SE.

173.57 (173.57) BRIDGE (FRANKFORTS FORD) Abutments on
the towing path and on a ledge on the berm are the remnants
of a bridge constructed in 1849. It was a timber span 64
ft. long. The abutments are rough dressed blocks of Ridge-
ley Sandstone from a quarry on Patterson Creek in West
Virginia. The bridge was destroyed by the Confederates on
February 2, 1864 and was rebuilt later.

173.61 (173.61) CULVERT 231 COLLIER'S RUN Constructed
1846-48. The arch stones are hammer-dressed gray Ridgeley
Base on ledge of limestone (7), ½ to 1 ft beds, ledge 10 ft above Canal; piers 7 tiers max. above ledge.
<table>
<thead>
<tr>
<th>Page 455</th>
</tr>
</thead>
</table>

Sandstone. The arch has a span of 12 ft. and a rise of 6 ft. 18 ringstones and a keystone are in the face of the arch. 84,250 bricks are in the inner part of arch in the barrel of the culvert. The parapet and coping are 2 ft. high. The parapet, spandrels and coping are rough cut Ridgeley Sandstone.

- 500.72 begin embankment on bank
- 501.16 end embankment on bank

- 173.98 (174.13) PUMP This facility was constructed 1873 to 1874 as a supplementary feeder to the canal. The remains of the structure is 50 ft. southwest of the towing path.

The boiler and pump machinery house were side by side. The pump was on cement foundation with footings of sandstone and bricks. The brick boiler room and engine house were on the southeast side of the pump. A well for the pump, 6 ft. in diameter, that was on the canal side of the pump is now covered by wood. It was connected with a concrete trunk leading to canal and with a culvert 6 1/2 ft. high, 6 ft. wide to the river. The centrifugal pump was 2 ft. 8 inches...
Pump house bank 72

Brick on downstream side of engine house

Pump stand foundation at rear side of pump house

All inside with wood, well ceiling to concrete

Back filling to concren

Tank holding to concren

Concrete

9 - 11

8

Wood

Brick

Concrete

Brick

Concrete

Concrete

12' 6"
in diameter on a vertical shaft. It was driven by a pair of overhead, vertical, non-condensing compound stem engines at the top of the well. The cylinders were 14x14 inches and the engine was geared 2 to 1 to the pump shaft and delivered 66 h.p. per engine. The engines were built by Thomas F. Rowland, Continental Works, Greenpoint, N.Y. The tubular boilers were built by Basshor and Company, Baltimore, Md. The pump could raise water 22 ft. 5 inches at a rate of 27.3 cfs.; maximum capacity was 12,000 gpm.; The boiler and machinery were designed to use cheap coal and were not designed for efficiency as they were used. The initial cost of the installation was $20,504.40. The steam engine was replaced by an internal combustion engine during World War I. The machinery and boilers were sold for scrap in Moore's Hollow called outboard; may be supported on this win.

174.12 (174.24) WASTE WEIR The concrete frame has 3 gates for insert boards; footings and wings are sandstone rubble.

A date, 1911, is in the concrete. An outcrop of Ridgeley

(570)
Sandstone is along Maryland Highway 51. Beds are 1 to 10 ft. thick and strike N40°E, dip 45°E.

Sands tone is along Maryland Highway 51. Beds are 1 to 10 ft. thick and strike N40°E, dip 45°E.

The face is mainly hammer-dressed, with some cut, gritty dark gray limestone. Fossils are prominent in the limestone in the coping. Wings are coursed limestone rubble. The flume is on the berm 20 ft. from the lock. The spillway to the flume is on the lower berm wing and is 10 ft. wide, 2 ft. deep with a 9 ft. drop at the front. A pile of round beds boulders is at the base. A footbridge is over the lower part of the lock. Slots for stop gate boards are above the breast. Part of the miter frame shows in the upper recess.

Bolts on the upper berm wing were for a timber fender. The lock gates were damaged by Confederate forces on February 2, 1864. The lockhouse is on the side of the towing path. It is a log frame with plank siding, 2 stories high with Ridgeley Sandstone rubble in the foundation. Concrete forms on
the berm were formerly bases for the fuel tanks for the
pump below the lock.

An outcrop on the Western Maryland Railway exposes an
anticline in medium to thin bedded gray Keyser Limestone.
The beds strike N40°E and dip 10° on each flank. Blue Spring,
one of the largest in Maryland, is on the river shore, 200
ft. southeast of the lock.

174.33-174.41 (174.48-174.56) OUTCROP A cut on the West-
ern Maryland Railway exposes Ridgeley gray sandstone which
strikes N30°E, dips 40° SE on the east limb of an anticline
and 45°NW on the west limb which is exposed in the berm of
the canal. A prominent vertical, transverse joint cuts the
rock. Strike joint dip is 50°Nw. An exposure of dark gray,
Keyser Limestone is in a low bluff on berm.

174.55-174.83 (174.70-174.98) OUTCROP There are inter-
mittent exposures on the berm and on ledges along Maryland
Highway 51 of Ridgeley Sandstone. Beds 4 ft. thick and strike N25°E, dip 25°NW. A prominent joint strikes N30°W and dips 80° SSE.

501.05 right end, Cannel (Dor) ends up to 4 ft. thick; at 501.05 joint dip 10° towards canal, white pelleted & canal, pm exposure, dip of bed not certain

174.81 (174.96) CULVERT 233 MOORES HOLLOW Constructed 1838-39, 1849. This culvert with a 4 ft. span is now buried by silt. NW Leased
501.03-501.04 v 501.21 strike at right angle to canal; dip 70° upstream in Dor.

175.19 (175.30) CULVERT 234 Constructed 1838-40. The semicircular arch is cut gray limestone with a 6 ft. span and a 3 ft. rise. There are 6 ringstones and a keystone in the face of the arch. The abutments are 1 ft. high and the parapet and coping are 2 ft. high. The face stones are rough dressed sandstone. The spandrels are concrete on the lining at right angles, 10 ft. long, 3 steps, 9 ft. face ahead; same masonry. Stones exposed in arch, gray, strike at right, angle & back, dip 30° upstream. 12 ft. embankment west part of the arch on the towing path side.

175.24 (175.34) LOCK 73 9' lift, constructed 1838-40, 502.43

1849; rebuilt 1869. The face is cut and hammer-dressed limestone from Evitts Creek Quarry. A drop gate installed

(574)
1. Recesses like those in Lock 72.
2. No indication of drop gate.

Lock House Missing A-71
Lock = All Stone
Lock 73
Location 175.4 from W
81 from C.
in the upper recess in . Remains of piling for this
gate are below the breast wall. Bolts for timber fenders
are on the lower and upper wing wall. Slots for stop gate
insert boards are above the breast wall. The flume is on
the berm and ends in an overfall spillway on the lower berm
wing, 8 ft. wide. A pile of rounded cobbles and boulders,
the flume on lock.
up to 2 ft. diameter, is below the spillway. A pivot bridge
was formerly over the middle of the lock. Remains of sand-
stone rubble and cobbles of the foundation for the lockhouse
are on the towing path side. Boat train upstream g lock, canal 30 ft. wide.

175.30 (175.43) BRIDGE BALTIMORE AND OHIO RAILROAD BRIDGE
no. 65. The abutment on the towing path is gray, banded,
micaceous granite gneiss capped with concrete. The berm
abutment is quartzite and limestone with a top tier of gran-
ite capped by concrete. The through plate girder span was
placed over the canal in 1923 and was fabricated by McClintic-
Marshall, Pittsburgh, Pa. Previous to this the span was an
asymmetrical pony (open) Pratt truss placed about 1907.

This replacing an older through Pratt truss. The original bridge was a timber truss. The railroad bridge over the Potomac River, 300 ft. south of the canal, was built in 1901 by the American Bridge Company. It consists of 2 deck Pratt trusses with one deck plate girder approach on the north.

The original bridge of 3 covered timber spans was erected in 1842 and burnt in 1861 by the Confederates. A 3 span, Bollman deck truss with 10 panels per truss was built in .

The north abutment is hammer-dressed limestone and granite and the south abutment is hammer-dressed limestone. The piers are granite and limestone.

175.35 (175.50) LOCK 74 10 ft. lift, constructed 1838-50. A 5.5 ft. lock. North Branch picnic area across street north of parking lot.

North Branch picnic area across street north of parking lot. The north abutment is hammer-dressed and cut limestone from Evitts Creek quarry. Fossils of large coral heads are prominent in the coping. The coping on the south west side is packed with fossil shells forming a coquina.
Lock 73 - Bridge wall at head of mun. 2 ft. ast. head.
No pulley hole. Hole for at center of mun. and grad. circular guinum has ble. piling.
9" spool in upper and lower muns.
No upper or lower extensions.
Channel 91 ft. Long upper circular guinum to lower circular guinum. To bridge lock.

Lock 74 - Pulley and piling in upper mun. Pulley at front of belt with head wall top. 2 steps from side just up from circular guinum. Notch in guinum at top of step. Drop pit from seal in upper mun. Bridge wall at head of mun. Shelf on head.

No upper or lower extension.
Some blocks are pebbly. A drop gate was installed at the head of the upper recess in 1875. An iron pulley and piling remain. A notch for gears and slots for control rods are in the recess. The circular quoins in the upper recess are covered by a 2 ft. concrete extension which has slots for an insert board stop gate. The flume is on the berm, 15 ft. from the lock, and has an overfall spillway 8 ft. wide at the front of the lock. Blocks of limestone in the spillway have veins of quartz pebbles 1/2 to 2 inches wide with pebbles up to 1/4 inch in diameter. These blocks also have masses of fossil shells (coquina); some Ridgeley Sandstone blocks are in the spillway. Solution erosion to a depth of one inch is on the face of limestone blocks in the spillway. A pile of cobbles 15 ft. long is on the upper berm with timbers embedded in it. This is the remnant of a crib fender. A similar but smaller pile of cobbles, 12 ft. long, is on the lower berm.
Bolts on the face of the wings on the upper and lower berms formerly held timber fenders. A pivot bridge was formerly over the center of lock. The lockhouse is on the side of the towing path. It is a frame structure on a rubble foundation. A small shanty was formerly on the berm at the drop gate. Bart basin above level. Road bridge on upper end of lock.

175.49 (175.63) WASTE WEIR This structure is a concrete frame with 3 gates for insert boards. The spillway boards are in place. Post 1846. No paddle, wings at right angles, 10 ft. Logan gauge side, 15 ft. Logan inside; 5 ft. drop at end of spillway, rim side.

175.53 (175.67) LOCK 75 Lift 10 ft., constructed 1838-40, 1849, rebuilt 1869. The drop gate at the upper recess was installed in 1875. The face of the lock is cut and hammer-dressed limestone from Evitts Creek quarry; coquina and pebble streaks are in the blocks in the lower wing wall, towing path side. Slots for an insert board stap gate are at the head of the lock. The flume is on the berm, 15 ft. from the lock. An overfall spillway of the flume is on the
lower berm wing. It is 8 ft. wide and 3 ft. deep. A pile
of rounded cobbles and boulders is at the base of the spill-
way. Iron hinges, square quoins and piling in the upper
rounded top on front head wall; bolt 2 ft. arm head, bolt in recess near top
recess are remnants of the drop gate structure; bolts for
timber fenders are on the lower face of the lock, towing
path side and on the upper berm. A low pile of stone on the
lower berm is probably the remnant of a timber fender crib.
The lockhouse, along the towing path, is clapboard over logs
on a rubble sandstone foundation. Its ridge

175.88 (176.02) SETTLING PONDS Several large settling
basins are on the flood plain below the canal. They were
built by the Pittsburgh Plate Glass Company in 1857 to ser-
vice its plant on the berm side of the canal. A brick pump-
house is on the berm of the canal. Supplies water to Pb.

176.36 (176.50) VAN METERS FERRY A ferry crossed the
Potomac near here in the 18th and 19th centuries.
Harrell gray shale is on the berm. The beds strike N40°E and dip 16°SE.

176.88 (177.02) **HIGH FLOOD PLAIN** The meadow on the river side of the canal is a high flood plain. A terrace, 40 ft. above the river, is on the berm. Power line crossing, curve begins 59.430

MP177. 504.61

177.12 (177.29) **CULVERT 235** Constructed 1837-41. The arch stones are cut limestone. The arch has a 4 ft. span and a 2 ft. rise. The parapet and coping are 1 1/2 ft. high and are hammer-dressed sandstone. The culvert is filled with gravel to the keystone (1971). Wings at right angles, length?

Born on Embankment 524.30 - 524.75

178.12 (178.30) **WESTERN MARYLAND RAILWAY BRIDGE** no. 1610.
This is a through, plate girder bridge fabricated by the Pennsylvania Steel Company in 1905. The railroad cuts to the east expose Brallier (woodmont) – Harrell gray shale overlain by cobbles in a silty sand matrix. A road crosses the canal on a concrete roadway over 4 steel culverts.

178.24 (178.42) ROAD CULVERT 3 steel culverts, each 4 ft. in diameter, with concrete facing are in the bed of the canal. A facing of Ridgeley Sandstone rubble, concrete and brick border the culverts.

178.67 (178.85) ROAD CULVERT 2 concrete culverts, each 6 ft. in diameter, carry a road over the canal. A facing of Ridgeley Sandstone, rubble, concrete and brick border the culverts.

EMBANKMENT The berm of the canal is on embankment in this section. Kirkendalls Ferry over the Potomac River was formerly near here.

179.03 (179.14) CULVERT 236 Constructed 1839-40. The arch stones are hammer-dressed, dark gray to black, crystal-

Right angle wings, 8'4' long.
line limestone. The arch has a span of 5 ft. and a rise of 2 2/6 ft. 6 ringstones and a keystone are in the face of the arch. Fossil corals are prominent in the limestone.

The concrete parapet is 2 ft. high and abutments are 1 ft. high. The spandrels and wings are concrete with some Ridgeley Sandstone blocks in the upstream wing. A pile of cobbles and boulders up to 1 ft. size, mainly sandstone, are on the downstream side of the parapet.

Culvert 237 and Waste Weir

1838-41, 1849. The arch is hammer-dressed limestone with a 5 ft. span and a 2 1/1 ft. rise. 8 ringstones and a keystone are in the face of the arch. The abutments are 1 1/2 ft. high. A drop of 5 ft. below the pavement is at the mouth of the culvert on the towing path side. The parapet and coping are 2 ft. high. The coping is hammer-dressed limestone. The spandrels and parapet are roughly dressed.

Ridgeley sandstone with casts of fossils prominent in the
blocks. There is some concrete in the spandrels. A wall on the berm is 9 ft. high (above the culvert arch) and is mainly Ridgeley sandstone. The arch stones on the berm are hammer-dressed limestone on which the siliceous material stands out 3/8 inch in relief from weathering. The waste weir on the berm is on the downstream side of the culvert. It was originally an overfall with a 12 ft. drain but is now a concrete frame with 3 gates for insert boards. The waste weir is bordered by sandstone rubble walls. An outcrop of Brallier (Woodmont)-Harrell shale is in the ravine east of the culvert. The shale is dense, gray, platy with interbedded sandstone beds up to 2 inches thick. 60 ft. of the rock is exposed. The beds strike N15°E, and dip 62°NNW. A strike joint and a joint trending N45°W, are both at right angles to the beds.

A ledge on the berm contains Brallier (Woodmont)-Harrell shale. The rocks are thin bed-
ded, gray shale and sandstone. The beds strike N20°E and
dip 50° WNW. A low flood plain is on the West Virginia side
of the river rising inland to a 40 ft. terrace at the base
of a hill.

179.95 (180.00) CULVERTS Box culverts are on the berm
506.90
under the Baltimore and Ohio Railroad yards. They are con-
crete with openings 2 ft. high x 1 1/2 ft. wide. Power

lines cross canal at this point.
506.95-506.98 Strengthened, so frost action inside of vault.
179.9 Eutre Ck H.B.O.
MP 180 507.00 – power line casing
179.99 (180.04) CULVERT 239 Constructed 1838-40. The
507.05
arch is hammer-dressed, dense, gray limestone. The arch

has an 8 ft. span and a 4 ft. rise. 12 ringstones and a

keystone are in the face. The abutments are 2 1/2 ft. high.

The parapet and paving are coursed Ridgeley Sandstone

179.99-180.63 (180.04-180.68) TERRACE The canal is on a
507.18
terrace 30 ft. above river level in this stretch.
Ed 1838-40, 1849. The aqueduct has a single segmental arch with a 70 ft. span and a 14 ft. rise. 50 ringstones and a keystone are in the face of the arch. The aqueduct is 160 ft. long between the ends of the wings. The parapet and coping are 7 ft. high with the top of the coping 27 ft. above stream level and 34 ft. above the foundation. The parapet is 7 ft. wide at the top and 7 1/2 ft. at the base on the towing path side. It is 5 ft. wide at the top and 5 1/2 ft. at the base on the berm. The waterway is 21 ft. wide. A 6 inch belt is a foot above the keystone at the face of the aqueduct. The arch stones, skewbacks, water table, coping and the inside of the parapet are cut stone. The spandrels and other face stones are scabbled. The stone is compact, fossiliferous Tonoloway Limestone from a quarry 3 miles up Evitts Creek. The limestone is siliceous with globs of reddish brown iron oxide up to 4 inches
Falls Church - Begin 57,756, 35' parking &

WM & Cumberland - sound bridge 4' 165'-6

No number on bridge over canal.

2 numbers

W

Evitts Creek

E

Coping placed on long sides; side in 6" dry.

Under Repair 1975.

(593)
Earth Arch Aqueduct inst.

Arch to center hole = 1 ft. to 1 ft.
Perpetual 4 ft. = 6 ft.
Coping 1 ft.
Abutment to top quad. = 13 ft.

Many in secluded quarter and arch with stone interns ringstone.

Edge of coping is broken off center and end guard of fountain. Beam side, east and west, parts of facing and face of arch also fallen, stone intact.

Edge of coping on wings has also cracked off.
in diameter on some of the faces. Blocks on the berm have silicified corals. A tramway was used to transport the stone from the quarry to the aqueduct. The face stones have fallen from the north (berm) side of the spandrels and abutments. The Baltimore and Ohio Railroad yards to the north were built in 1952-1960 at a cost $9,000,000. The concrete arch bridge carrying the yards over Evitts Creek was built in 1956.

Diagram- 6"h x 8"w → 3"h x 4"w plan of aqueduct field notes 9/4/71 pl.

MP181: 508.00

180.79-181.04 (180.85-181.10) OUTCROP A ledge on the berm 507.95-507.97

is formed of Brallier (Woodmont)-Harrell shale with thin sandstone beds. Several sandstone beds are up to 2 ft. thick at 180.95. The beds strike N40°E and dip 35°SE. Several minor flexures are exposed in the ledge. Intermittent exposures of the shale occur west of 180.95.

181.35 (181.40) CULVERT 240. Constructed 1839, 1848.

(595)
This structure was used as a road culvert until 1922. The arch is hammer-dressed, dark gray limestone with a 12 ft. span and a 6 ft. rise. 18 ringstones and a keystone are in the face of the arch. The abutments are 1 ft. high and the parapet and coping are 1 1/2 ft. high. Wings, spandrels, parapet and coping are coursed Ridgeley Sandstone rubble with prominent molds of fossils on dressed surfaces. Flood plain deposits at the culvert are 4 ft. deep. Imbricated shale and sandstone slabs in the lower part of these deposits are covered by 2 ft. of gray silt. 5 ft. embankment above coping.

181.45 Modern culvert. 4 ft. diameter, concrete pipe 10 in, reclaimed brick arc, 3 ft. basin line 508.30

181.35-181.66 (181.40-181.71) BASIN The broad, reed covered area was formerly a boat basin.

508.45-508.50 ball park - playground

181.75 (181.80) SEWAGE PLANT The sewage Treatment plant for the city of Cumberland, constructed 1957, is adjacent to the towing path. Thistle Ferry formerly crossed the river to south of the canal. Expanded in 1975, $9,260,000. Paved street - ride to city, mountains; Begin 40 Center area.
Cliffs of Brallier (Woodmont)-Harrell shale and sandstone are on the West Virginia side of the Potomac River. The beds strike N30°E and dip 10° to 15°SE. Large rounded boulders of sandstone, up to 3 ft. size, are on the towing path west of sewage plant.

182.15 (182.20) WESTERN MARYLAND RAILWAY BRIDGE No.1628.

This is a through plate girder, single span over the canal and was fabricated by the Pennsylvania Steel Company, Steelton, Pa. Bridge no. 1625 over the Potomac River, 1,000 ft. to the southwest has 4 deck plate girder spans on concrete piers. The bridge was fabricated by the Pennsylvania Steel Company, Steelton, Pa., in 1904. Rounded cobbles and boulders, mainly sandstone, up to 2 ft. in diameter, are in the towing path. Between the canal and the river is an old trash dump forming a flat top mound rising downstream to 10 to 15 ft. high at the Western Maryland Railway.
182.60 (182.65) CULVERT 241 Constructed 1848. The semi-
509.63

1 circular arch is hammer dressed limestone with a span of 4
ft., and a rise of 2 ft. The parapet is 2 ft. high and is
2 coursed sandstone rubble. The culvert is filled to the arch
3
(1971): Virginia Avenue on the east side of the culvert
509.62
crosses the canal on a single steel culvert 15 ft. in diam-
6
eter fitted between sandstone blocks from the abutments of
8 a bridge that formerly crossed the canal here. The bridge
10 was constructed 1838-40 and 1848-49. It was covered timber
13
lattice (Town) truss with a span of 64 ft. on high stone
14
removal about 1909 when a 3-span, Pratt through-rib truss bridge
15 was placed on piers from old piers from bridge on river.
16
The approaches were very steep and impracticable.
17

182.60-183.05 (182.65-183.10) TERRACE The flat area on
20 the berm is a terrace 20 ft. above the river.
21

182.90 (182.97) WESTERN MARYLAND RAILWAY BRIDGE No. 1631.
23

MP 183 509.99 Erased while on Swamp Cutoff at Wileys Ford. Impac-
25
crash, band, stone, rough upstream. (598)
This is a through plate girder, single span over the canal, fabricated by the Pennsylvania Steel Company, Steelton, Pa., in 1904. Bridge no. 1635 over the Potomac River, 800 ft. to the west, is 4 deck plate girder spans on concrete piers. It was fabricated by the Pennsylvania Steel Company, Steelton, Pa. in 1904. The flat topped mound on the north side of the railroad is formed of spoil from the Knobbly Mountain tunnel of the Western Maryland Railway on the West Virginia side of the river.

182.98 (183.05) **FLOOD PLAIN** The flats along the river are flood plain terraces and are 20 and 40 ft. above the river on the berm side of the canal.

183.09 (183.16) **POWER AND GAS LINES** A single, 12 inch gas line of the Cumberland and Allegheny Gas Company, Columbia Gas of Maryland crosses beneath the canal. A terrace is 40 ft. above the river on the berm. A large steel building is on this terrace.
W. to Cumberland
good path, hard
brushed stone
Access to WW
hard rough stone

End frame at 511.25
at access point

Concrete will
located 101'/100
1/4 to C

(600) Bridge
3' th
Access
Concrete
183.20 (183.27) **HIGH GUARD GATE** Constructed 1849. The coping is concrete with scabbled Ridgeley sandstone blocks in the rest of the face. Some limestone rubble is in the base along the towing path. The main gate was on the west side (towing path) side with a water level control gate on the berm. The sandstone was from a small quarry on the berm. The lock was used to retain water in the Cumberland basin when the rest of the canal was drained.

Diagram 8"x8" → 4"x4" field notes 9/14/71 p4.

183.43 (183.50) **WASTE WEIR** The original stone overfall, 60 ft. long, was constructed in 1849 across the mouth of a ravine. The limestone and sandstone coursed rubble of this structure forms the base for the present concrete structure, which is 150 ft. long. gates.

8"x8" → 4"x4" diagram waste weir

Boat train was a break weir and at lock was 80-100 ft. wide.
Waste weir - 1/4, south of Cumberland
150 ft long - concrete
At north end - 3 gate concrete waste boards, at base of weir
Masonry wings + walls, at waste, no paddle gates
Gates, 8.5 ft high. Sandstone and limestone lower wall, 12 feet high.

Profile section
5/8" steel support for top of each buttress

Plan
3 concrete board gates, no paddle
Timber insert

Earth top, embankment of 12 ft wide, 12' levee
bank of overflow opening

Buttress 8' 15', 29', 37', 47', 57', 67', 77', 87'
9 bays
Each bay 12+6" wide at base 15' high, j 7' of concrete stem

(602)
Cambria and Allegheny R.R. (Columbus the City) pipeline at Cambria above Elizabethtown.

Stop here....

6″ h x 8″ w, 30″ h from top.

Length 5′ over 5′ from concrete.

Stones 16″.

B'niehly downstream.

Scabbed Orangong sandstone, some limestone rubble.

Lock is stone masonry from base to top, park level, then concrete above.
The canal now ends at the waste weir. The last mile of the canal has been filled and serves as a flood abatement embankment. The river side is faced with gray limestone rubble; the path continues on the embankment. At this point the canal was formerly 100 ft. wide forming a basin for barges.

183.78 (183.90) **RETAINING WALL** The wall between the railroad and the path is built of limestone blocks.

183.53-188.83 (183.60-184.00) **OUTCROP** A low bluff east of the path, at the base of the Baltimore and Ohio Railroad is formed of Brallier (Woodmont)-Harrell olive-drab shale. The shale is thin bedded, platy with beds 1/8 thick. The beds strike N20°E and dip 15° to 20°ESE. A terrace, 60 ft. above river level, is east of the railroad and is covered with gravel in a matrix of orange-brown sand.
The dam was 400 ft. long and the crest was 17 ft. high, 6 1/2 ft. above the canal level. The height of the dam was raised 1 ft. in 1857-1858. The structure cost $102,527 and was mainly hammer-dressed Tonoloway limestone from Evitts Creek quarry. The backing was from quarries in West Virginia near the dam. The pool formed behind the dam was 2 miles long. Only the abutments remain on both sides of river and the dam was removed by U. S. Army Corps of Engineers as part of flood abatement program in 19.

The area to the east of the canal in the vicinity of the dam was a large basin which was filled in after the canal ceased operations in 1924.

14"x8" x 7"x4" - plan of basin, etc.

GUARD LOCK Constructed 1838-42, 1848. The 2 locks set side by side are hammer-dressed limestone from Evitts
The working inlet lock had an 8 ft. lift.

The other lock was a 13 ft. high water guard lock. A lockhouse was formerly between the locks on the river side of the towing path. Western Maryland Railway B ridge no. 1656 across the Potomac at this point is a curved, through, plate girder structure with 2 tracks. The 6 spans over the river were fabricated in 1912. There are 4 short, concrete, slab spans over the inlet locks. A second bridge carries a siding over the inlet locks and it consists of 2 deck plate girder spans.

The freeway bridge to the west over the railroad and the river is 3 deck plate girder spans with deck plate girder approaches. A 2 span bridge, with tied through steel arches carries W. Va. Highway 28 over the Potomac River to the west.
William E. Davies
1917-1990
Memorial to William E. Davies
1917-1990

The enthusiasm, ebullience, curiosity, competence, and dedication that so characterized Bill Davies melded to create an outstanding engineering geologist, explorer, speleologist, teacher, and public servant. The exciting adventures, productive achievements, and humorous incidents shared with Bill provide his numerous friends and colleagues with warmly nostalgic and treasured memories.

Bill Davies was born on Christmas Eve 1917 in Cleveland, Ohio, to William R. Davies and Florence (Koch) Davies. He and a younger brother, Jack, shared a close family relationship with many devoted aunts, uncles, and cousins. There were nearly weekly gatherings of the clan via travel on the rapid transit that sparked Bill’s lifelong interest in railroads.

The Davies family moved to East Orange, New Jersey, when Bill was about 12 years old. Their house on Maple Avenue backed up to the commuter railroad tracks of the Delaware Lackawanna and Western Railroad, where Bill monitored the conversion of the line from steam to electricity. He read everything available about the D.L. and W. Railroad as well as the Pennsylvania and Baltimore and Ohio railroads. Later, in response to a high school (Carson Long Institute, New Bloomfield, Pennsylvania) assignment, Bill, his brother, and a friend, George Hicks, surveyed the dug but unfinished five tunnels of a proposed route of the Susquehanna River and Western Railroad between Harrisburg and Pittsburgh. This route would cut several hours off the running time of the Pennsylvania Railroad between the same two cities. That project was Bill’s first engineering study, resulting in his first research paper. It was at this time that Bill met Frank Tressler, an attorney and amateur geologist who introduced him to the many outcrops of fossil beds in the Perry County, Pennsylvania area. It was there also that Bill first visited and surveyed many caves.

The Davies family moved to Cleveland, Ohio, where Bill was about 12 years old. Their house on Maple Avenue backed up to the commuter railroad tracks of the Delaware Lackawanna and Western Railroad, where Bill monitored the conversion of the line from steam to electricity. He read everything available about the D.L. and W. Railroad as well as the Pennsylvania and Baltimore and Ohio railroads. Later, in response to a high school (Carson Long Institute, New Bloomfield, Pennsylvania) assignment, Bill, his brother, and a friend, George Hicks, surveyed the dug but unfinished five tunnels of a proposed route of the Susquehanna River and Western Railroad between Harrisburg and Pittsburgh. This route would cut several hours off the running time of the Pennsylvania Railroad between the same two cities. That project was Bill’s first engineering study, resulting in his first research paper. It was at this time that Bill met Frank Tressler, an attorney and amateur geologist who introduced him to the many outcrops of fossil beds in the Perry County, Pennsylvania area. It was there also that Bill first visited and surveyed many caves.

The early convergence of Bill’s interest in engineering and in geology led him naturally to the Massachusetts Institute of Technology, which he entered in 1935. Sharpening his skills in mathematics and in physics, he graduated in 1939 with a major in geology and a minor in geophysics. He then accepted a graduate assistantship in the geology department at Michigan State College. In addition to his departmental responsibilities, he was a summer field assistant with the Pennsylvania Geological Survey conducting geologic mapping in the south-central part of Pennsylvania. The geology department secretary at Michigan State College was a keen judge of character and introduced Bill to Geraldine Hall. After Bill received his M.S. in June 1941, the two were married in November 1941. Gerry became his lifelong partner, frequently accompanying him into the field and at his numerous international meetings. She appreciated his interest and his dedication, and she contributed substantively to his work.

Bill entered the U.S. Army in July 1941 as a second lieutenant with the Corps of Engineers and was stationed at the Engineer Reproduction Plant at Fort McNair and later at the Army Map Service, both in the Washington, D.C. area. At the map Research Department, he started with one assistant, and by August 1944, he was Captain Davies, Chief of the Map Research Department, with a staff of 70. They produced thousands of maps for strategic planning of ground and air operations, as well as handkerchief maps for pilots bailing out and for inclusion in loaves of bread for prisoners of war. Bill recalled delivering to the White House classified maps destined for Winston Churchill. When the war ended, Bill was a Major and later retired from the Army Reserves in 1963 as a Lieutenant Colonel. After leaving military service in 1946, Bill remained at the Army Map Service as a civilian in charge of gathering map intelligence data.

In May 1948, Bill left the Army Map Service and joined the West Virginia Geological Survey for an investigation of the caves and karst of West Virginia. The work was initiated.
primarily because of the interest at that time in the use of caves as defense shelters. Thomas W. Richards, then a student at Dickinson College, was Bill’s field assistant during the summer of 1948, and related the following recollections of their work together.

Working from 7 ½ minute quadrangles on which Bill had plotted all the limestone outcrops and known caves, they visited every outcrop they could, and queried farmers about the presence of any caves, sinkholes or pits.

Richards quickly learned that Bill favored large breakfasts and dinners, but skipped lunch. For daytime survival, Richards carried a loaf of bread and jars of peanut butter and jam in his pack. Bill accepted a sandwich only once, on a day in which they had breakfasted lightly. By summer’s end, Bill had added approximately 150 new caves to the then-known inventory. They worked on the future publication *Caverns of West Virginia* during the week and moonlighted in Maryland on Saturdays and Sundays doing fieldwork for the subsequent book, *Caves of Maryland*. *Caverns of West Virginia*, describing the caves of the state, their origin, and the features of the karst related to the caves, was published by the West Virginia Geological Survey in 1949. It became a bestseller that has gone through three editions. *Caves of Maryland* was published in 1950.

Bill’s long and productive career with the U.S. Geological Survey started in August 1949 when he was asked to join the Military Geology Branch by its perceptive chief, Frank Whitmore. The Corps of Engineers largely funded that branch, and Bill’s expertise and familiarity with the engineering geology needs of the military were extremely valuable professional assets. In one of his early assignments, Bill was chosen as the site selector for the first underground installation in the United States, at Raven Rock (Camp Ritchie), Maryland. In June 1953, I accompanied Bill to Thule Air Force Base (Greenland), which at that time was being enlarged. Bill seized upon the availability of helicopters as a rare opportunity to extend the range of our work and to map an extensive region including offshore islands that previously had received only reconnaissance coverage. By-products of that work included a detailed report on the geology of this area published in Denmark in 1963 by the Meddeleser OM Gronland.

On March 19, 1954, Bill joined Justice William O. Douglas and eight other naturalists, conservationists, and newspaper editors for that memorable hike from Cumberland, Maryland, to Washington, D.C., along the 184.5 miles of the Chesapeake and Ohio Canal. In a misguided campaign to make the scenery along the Potomac River more accessible to the public, the *Washington Post* had suggested that a parkway be constructed over much of the canal. Justice Douglas, in an eloquent plea, challenged the editors to get acquainted with the canal by hiking its length with him. The editors of the *Washington Post* accepted the challenge, and after the hike, they dropped their support of a parkway. It was the start of Bill’s love affair with the canal and of his close relationship with Justice Douglas. Almost all of the engineering geology concerning the canal’s construction and its subsequent designation as a national park was mapped or assembled by Bill for the use of Justice Douglas in preparing the requisite legislation.

During the period of 1954-1955, Bill sailed to Antarctica aboard the icebreaker U.S.S. *Atka* for the purpose of selecting sites suitable for U.S. research stations during the International Geophysical Year. His choices were based on his keen assessment of each site’s purpose, its supply needs, and its proximity to its study subjects, whether they were penguins or large ice masses. The Davies Escarpment in Antarctica was named in honor of his work there.

Bill was appointed assistant chief of the Military Geology Branch in January 1955. In February 1956, Bill became chief of the Alaska Terrain and Permafrost Section of the Military Geology Branch. That group consisted of glacial geologists, geomorphologists, and botanists, several of whom had been students of Kirk Bryan at Harvard and who had conducted pioneering studies on the surficial and geomorphologic implications of permafrost. Bill’s stewardship provided guidance in utilization of the results of these research studies toward their application to engineering geologic problems. In addition to his administrative duties, Bill resumed his field studies in the ice-free land of northern Greenland. This work was done in cooperation with the
U.S. Air Force for the purpose of establishing austere airfields with little or no construction effort. It was a unique opportunity to do detailed ground investigations of otherwise inaccessible regions and to combine engineering geology with observations of the glacial geology andgeomorphology of areas that had been seen only from aerial photos.

In early June 1960, Bill crossed the Greenland Icecap by helicopter and joined a group that had established a base camp at Centrum Lake, northeast Greenland. Using two H-34 helicopters, the group conducted fieldwork from the Centrum Lake base camp from June 14 to July 1, 1960. It was during this period that Bill discovered and explored the farthest north caves in Greenland, at 81 degrees N. These caves, comparable in size to caves in the temperate zones, contained 12 levels in a vertical range of 1000 feet and are valuable indicators of glacial limits in northern Greenland. On July 2, 1960, with two helicopters and a party of ten, Bill led an epic journey across northeast Greenland to Cape Morris Jesup, the northern tip of Greenland. On July 4, 1960, the party was the first to set foot on Coffee Club Island, an offshore moraine and the northernmost land on Earth. Bedrock and unconsolidated materials were mapped, raised marine beaches were measured, and samples were collected, including shells for radiocarbon dating. Several published reports resulting from these investigations established, among other things, that Wisconsin glaciation covered all of northeastern Greenland with a continental ice sheet centered in central Greenland; withdrawal of the ice sheet resulted in marine submergence to a depth of 225 ft (68 m) about 5400 years ago.

In mid-July 1960, Bill and I did detailed fieldwork at a potential unprepared landing site at Bronlund Fjord, Peary Land, Greenland. Our equipment included a then revolutionary, newly designed tent of internal aluminum frame construction. The first order of business was to put up the tent for safety, if not survival. By the time we had assembled the world’s largest kite, the Greenland wind obliged us with a trial flight! It was all we could do to hold on to the tent while we searched for rocks big enough to hold down the tent flaps. Of course, we had intentionally chosen a site with few large rocks. After what seemed like hours, we had anchored the tent and crawled in to lie down on our sleeping bags. We were exhausted but triumphant. Bill said, “Can you imagine what that might have looked like if some Eskimos had happened by? We would have become part of their legends in our time!” Our fatigue quickly turned to laughter.

Bill was the ideal field companion: considerate, generous, never complaining, and remarkably calm in emergencies. He was a bear for work, and his interest and curiosity always lured him to just one more outcrop.

The summer of 1960 was a vintage time for fieldwork. After the challenges of Greenland, Bill flew to Alaska in late July to examine potential landing sites in the Aleutians and at Anaktuvuk Pass in the Brooks Range. In August 1960, he traveled to Finnmark, northern Norway, where he mapped the engineering geology of several austere landing sites for NATO. It was a far cry from uninhabited northern Greenland. The Lapps, colorfully clothed, were frequent visitors with their herds of reindeer. Bill, always a part of any community, was invited to the social event of that season at Kautokeino, a sellout filming of “Gone With The Wind.” The movie dubbed in Swedish was shown to an all Lapp-speaking audience.

From 1961 through 1966, Bill’s summer fieldwork was conducted in the Yukon-Tanana Upland of central Alaska. Using helicopters, Bill mapped the surficial and bedrock geology with engineering interpretation for construction and military operations. During the summer of 1967, he conducted engineering geology studies for the U.S. and Australian governments in the central deserts of Australia. After completion of that work, he transferred to the Engineering Geology Branch of the U.S. Geological Survey.

Bill’s work then was primarily in the Appalachians, a region that had first elicited his interest in geology and that would continue to stimulate and challenge him. In late 1967, he made a study of the stability of coal refuse banks and tailings dams in cooperation with the U.S. Bureau of Mines. This was followed by two-year effort to locate suitable sites for missile silos in bedrock east of the Mississippi River. In 1972, Bill was the engineering geologist assigned to
investigate the Buffalo Creek, West Virginia, disaster that involved the failure of a tailings dam made of coal waste. The failure resulted in a 20-30 foot-high wave of highly turbid water that rushed through a narrow valley, inundating 16 small communities with approximately 130 million gallons of water and coalmine debris and killing 120 people. Bill was appointed by the Governor of West Virginia to a commission to investigate the disaster. The investigation, completed in 1973, resulted in the enactment of legislation to require regulations for critical elements of contemporary coal-mining procedures, especially the construction of coal-waste impoundments. Bill's 1967 studies had identified many coal-waste dumps, including the tailings dam at Buffalo Creek, that were vulnerable to failure. His report generally had been ignored. After the 1972 disaster, Bill was sought for advice by several governmental agencies.

In 1975, he was asked by the Appropriations Committee of the House of Representatives to determine the cause of cost overruns and to evaluate the safety of Gathright Dam in Virginia. It was designed as a hydro-facility, and had been sited on karst. He was asked by the U.S. Department of Justice in 1977 to determine the safety and the practicality of the tailings dams proposed by the Reserve Mining Company, to prevent discharges into Lake Superior. That same year, he investigated for the Corps of Engineers the failure of the Kelly Barnes Dam at Toccoa, Georgia.

Bill's work on the slope stability of the Appalachians was greatly aided by one of his many dedicated and devoted assistants, Greg Ohlmacher, who worked with Bill from 1975 to 1983. Greg reported that Bill, instead of stopping at the boundaries defined by the Appalachian Regional Commission, decided to extend the mapping in order to complete all of the pertinent 2-degree sheets. That part of the project was completed as a series of 7½ minute U.S. Geological Survey open-file maps. Bill was a major contributor to the Landslide Overview Map of the Conterminous United States, scale 1:7,5000,000 that was published in 1983. In all, he completed an amazing 1539 maps showing landslides and landslide susceptibility in Pennsylvania, Ohio, and West Virginia. He involved many college undergraduates as interns in drafting and compiling the final landslide maps, and he also took many of these students on short field trips in order that they would understand and appreciate what was involved in the work. In 1980, Bill was assigned to the Geological Survey of Indonesia, through the Agency for International Development, to train engineering geologists and to participate in landslide studies in Java and Sumatra.

Bill read and collected books voraciously. His library was one of the best private collections in Washington, D.C. One day in Vancouver, British Columbia, on his way to Alaska, Bill had to visit just one more bookstore with a fine Arctic collection. As he was negotiating a purchase, Police raided the place. Ye Little Olde Book Shop, unbeknownst to Bill, had a backroom with an extensive porno collection!

His bibliography contains more than 200 titles that embrace most aspects of geology, especially engineering geology, geomorphology, glacial geology, and speleology and attest to the breadth and scope of his accomplishments. In addition to these, there are also 50 military geology publications that have security classification and are not listed. He delivered hundreds of lectures in his well-organized and dynamic style, and guided numerous field trips for aspiring geologists.

Bill received the Antarctic Medal for his outstanding work in that continent in 1954-1955. He was a Fellow of the Geological Society of America, the Arctic Institute of North America, and the Explorers Club, and the American Association for the Advancement of Science. He was a member of the Geological Society of Washington, the Association of Engineering Geologists, and the Virginia Academy of Sciences, and he was president of the National Speleological Society (1954-1956).

No less astonishing than the multiplicity of his professional work efforts and the published results of a prolific scientist was Bill's unsparing dedication to a host of civic causes that required his expertise and that he embraced with vigor, leadership, and inspiration. Bill
represented Falls Church on the Northern Virginia Regional Park Authority for 30 years. Governors Robb and Wilder appointed him to the Cave Board of Virginia and with regard to the C and O Canal, he was the *ex officio* chief engineer for the National Park Service, and a charter member of the C and O Canal Association, of which he had been an officer or on the Board of directors from 1955 until his death.

Whether it was Thule, Copenhagen, or Djakarta, Bill’s warmth and personality elicited instant admiration. He had an extensive circle of friends who looked forward to hosting him and Gerry on their numerous travels to international meetings or on exotic field trips. He was generous of his time and efforts with friends and organizations, and whatever he did, he did well.

When Bill retired from the U.S. Geological Survey in July 1983, his career reflected merely a change in direction and emphasis. He continued to work on completing many of his geologic maps and reports, but used more time for his other pursuits. Chief among these was his intense interest in the C and O Canal, particularly the geology displayed along the canal and the engineering features on and adjacent to it. Not content with having mapped every one of its 184.5 miles on foot, frequently accompanied by Gerry, Bill reviewed all of the archival and library material concerning the canal. Mrs. Patricia Eames of the Office of Public Programs, National Archives, admiringly observed Bill’s “impressive skills in organizing and preserving the records of the C and O Canal - - for four years he came in twice a week, working from 8:00 a.m. to 5:00 p.m. each day.”

At the time of his death, Bill was preparing a guide to the engineering and geology of the C and O Canal, including a detailed history of the canal with emphasis on the engineering aspects and an annotated bibliography of more than 1000 publications pertaining to the canal. On Saturday, June 23, 1990, Bill led a Smithsonian tour of his beloved canal. Three days later, quite unexpectedly, he departed on his last great journey.

Those of us who were fortunate to have shared his tent, his office, or his council will cherish those memories. Aspiring engineering geologists can marvel and read from his impressive bibliography that attests to the scope of Bill’s contributions to his profession.

His loving family includes his wife, Geraldine H. Davies; a daughter, Pamela G. Davies; his son, William H. Davies; a brother, John A. Davies; and a new grandson, Drew William Davies.

Daniel B. Krinsley
Washington, D.C.
13 March 1993
Appendix B

An Event in the Legal History of the Chesapeake and Ohio Canal Company

William E. Davies

The Chesapeake and Ohio Canal was born in legal controversy and throughout its corporate existence it lived under the constant threat of dismemberment by legal processes. It finally collapsed into bankruptcy and trusteeship in its 64th year. Nearly 100 major legal cases involving the Canal Company provide information on little known but fascinating aspects of the canal's history. The case described below was the first one for the company and still remains one of Maryland's greatest legal battles.

Collision at Point of Rocks: The Chesapeake and Ohio Canal v The Baltimore and Ohio Railroad

As crowds gathered in Baltimore and in Georgetown on July 4, 1828 to participate in the start of construction for both the canal and the railroad, legal action was well underway that could lead to the quick death of either or both companies. The only practical route to the west for both companies was along the Potomac River and for much of the way the topography provided space for only a single right of way. Surveys for the canal showed that a route along the Maryland side of the river was the only possible one for its use. The railroad, in contrast, had surveyed two routes, one along the Maryland side of the river and another farther north. Since 1827 the Railroad Company had been obtaining quietly a right of way on the Maryland side of the river by purchase or easement and within a year had control of most of the critical sections between Point of Rocks and Cumberland. During the same period the Canal Company was struggling to organize and did little to obtain a right of way above Point of Rocks.

Early in 1828 the Canal Company realized that the Railroad Company's control of the right of way on the Maryland side of the river threatened to block its construction above Point of Rocks. On the 10th of June 1828 the Canal Company in conjunction with the Potomac Company obtained an injunction in the County Court of Washington County, Maryland: to restrain the B & O from obtaining additional land; to force the railroad to reveal the extent of right of way it controlled; to set aside all conveyance of land obtained by the railroad; and to prohibit county sheriffs from executing warrants for condemnation of land for right of ways.

The B & O reacted quickly on the 23rd of June by filing a bill of complaint in the Chancery Court of Maryland in Annapolis. The bill cited 21 points for overturning the injunction and asked that the Canal Company be restrained from obtaining a right of way at points of conflict above Point of Rocks. On the 24th and 25th of June the railroad filed two additional bills of complaint justifying its actions and asking further restraint of the Canal Company.

The Canal Company answered the bills of complaint citing numerous acts of the Legislature of Maryland to counter the railroad's claims, especially those claims that alleged the Canal Company had lost its rights because it lagged behind the railroad in completing its organization. The Canal Company also charged the railroad was involved in a conflict of interest because it had used U.S. Army topographical engineers to obtain land parcels for the right of way, although the engineers had been assigned only for the purpose of establishing the route of the railroad.

After receiving the evidence, Chancellor Theodorick Bland on July 21, 1829 ordered the three bills of complaint filed by the railroad be consolidated into one. He also ordered an injunction against the Canal Company as requested by the railroad. In the summer and fall of 1829 the Canal Company presented arguments to dissolve the injunction. Chancellor Bland,
however, countered with an order to establish a commission to make surveys and estimates of cost for consolidated construction of the canal and railroad between Point of Rocks and Harpers Ferry and at other points to Cumberland. Jonathan Knight, Chief Engineer of the B & O and Nathan L. Roberts of the C & O worked through the spring of 1830 on the surveys and submitted a report on July 12, 1830.

Based on the surveys the engineers offered a plan of "conjoint" construction that contemplated simultaneous construction of the canal and railroad. The plan provided for the location of the two lines at the "collision" points such that the railroad was on the inland side of the canal. The soil from the cuts would be greatly in excess of the embankment needs of the railroad and would be used to alleviate the deficiency of material for canal embankments. The plan of construction was applicable to five collision points downstream from Harpers Ferry and to 45 miles containing numerous tight places scattered between Harpers Ferry and Cumberland.

Testimony from both sides continued through 1830 and on November 7, 1831 Chancellor Bland issued a decree nullifying the injunction issued by the Washington County Court and making permanent the B & O injunction against the Canal Company. He also ordered the Canal Company to pay all court and survey costs. The Canal Company appealed immediately and the case moved to the Maryland Court of Appeals.

The Canal Company solicited an early decision from the Court of Appeals and the case was argued from December 26, 1831 to January 2, 1832. Walter Jones and A.C. Magruder represented the Canal Company. The attorneys for the Rail Road Company were Daniel Webster and Riverdy Johnson. The arguments presented to the Chancellor were heard again. Three major points were reviewed: (1) When did the railroad and the canal companies obtain their rights? (2) What rights were granted in the Canal Company's charter? and (3) What rights did the Canal Company derive from the Potomac Company? On January 4, 1832 the Court of Appeals by a vote of 3 to 2 reversed the decree of Chancellor Bland and dissolved the injunction obtained by the Rail Road Company.

Although the Canal Company's position prevailed, it was the loser in the long run. The four years of delay in court proceedings brought it perilously close to the time limit as established by its charter for completion to Cumberland. Although the company had power to continue construction its funds were inadequate. Aggravating this was the great inflation in construction costs that had developed during the period of court action. The railroad had the funds but lacked the power to continue construction. During the time of the court proceedings: the railroad proved that it was a viable form of transportation; it successfully applied steam locomotives to haul trains; and it was forced to adopt a route west of Harpers Ferry on the south side of the river, which because of the topography, placed the roadbed above the level of most floods of the river.

After the Court of Appeals decision the two companies were faced with working out a compromise for construction between Point of Rocks and Harpers Ferry. The railroad put forth a plan for "conjoint" construction but was rebuffed by the Canal Company. Pressure from the Maryland Legislature finally produced an agreement that allowed the Canal Company to build both the railroad and the canal at the tight points at a cost not to exceed $100,000. The railroad agreed to subscribe to 2500 shares of stock ($250,000) of the Canal Company. However, the railroad settled with the Canal Company for $226,000 in lieu of the cost of construction and the stock subscription. The railroad also agreed not to use the Maryland side of the river for a right of way until the canal reached Cumberland or until 1840 if the canal was not completed.
Selected Bibliography of William E. Davies

—— Caves: Encyclopedia Americana, v. 6, p. 149-151.
1955 Introducing the American underworld; the Valley of Virginia, in Celebrated American Caves: New Brunswick, New Jersey, Rutgers University Press, p. 3-18, 13-142.
—— Glacial geology of northern Greenland: Polarforschung, bd. 5, jahrg. 31, heft 1-2, p. 94-103.
—— Surface features of permafrost in arid areas, in Geology of the Arctic, Volume 2: Toronto, University of Toronto Press, sec. 2, p. 981-987.

